Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.
Autophagy. 2024 Oct;20(10):2275-2296. doi: 10.1080/15548627.2024.2366122. Epub 2024 Jun 20.
In neurons, macroautophagy/autophagy is a frequent and critical process. In the axon, autophagy begins in the axon terminal, where most nascent autophagosomes form. After formation, autophagosomes must initiate transport to exit the axon terminal and move toward the cell body via retrograde transport. During retrograde transport these autophagosomes mature through repetitive fusion events. Complete lysosomal cargo degradation occurs largely in the cell body. The precipitating events to stimulate retrograde autophagosome transport have been debated but their importance is clear: disrupting neuronal autophagy or autophagosome transport is detrimental to neuronal health and function. We have identified the HOPS complex as essential for early autophagosome maturation and consequent initiation of retrograde transport from the axon terminal. In yeast and mammalian cells, HOPS controls fusion between autophagosomes and late endosomes with lysosomes. Using zebrafish strains with loss-of-function mutations in and , core components of the HOPS complex, we found that disruption of HOPS eliminates autophagosome maturation and disrupts retrograde autophagosome transport initiation from the axon terminal. We confirmed this phenotype was due to loss of HOPS complex formation using an endogenous deletion of the HOPS binding domain in Vps18. Finally, using pharmacological inhibition of lysosomal proteases, we show that initiation of autophagosome retrograde transport requires autophagosome maturation. Together, our data demonstrate that HOPS-mediated fusion events are critical for retrograde autophagosome transport initiation through promoting autophagosome maturation. This reveals critical roles for the HOPS complex in neuronal autophagy which deepens our understanding of the cellular pathology of HOPS-complex linked neurodegenerative diseases.: CORVET: Class C core vacuole/endosome tethering; gRNA: guide RNA; HOPS: homotypic fusion and protein sorting; pLL: posterior lateral line; Vps18: VPS18 core subunit of CORVET and HOPS complexes; Vps41: VPS41 subunit of HOPS complex.
在神经元中,巨自噬/自噬是一个频繁而关键的过程。在轴突中,自噬始于轴突末梢,那里形成了大多数新生的自噬体。自噬体形成后,必须启动运输,离开轴突末梢,并通过逆行运输向细胞体移动。在逆行运输过程中,这些自噬体通过反复融合事件成熟。溶酶体货物的完全降解主要发生在细胞体中。刺激逆行自噬体运输的触发事件一直存在争议,但它们的重要性是显而易见的:破坏神经元自噬或自噬体运输对神经元的健康和功能是有害的。我们已经确定 HOPS 复合物是早期自噬体成熟和随后从轴突末梢开始逆行运输所必需的。在酵母和哺乳动物细胞中,HOPS 控制自噬体与晚期内体/溶酶体之间的融合。我们使用 和 ,HOPS 复合物的核心成分,在功能丧失突变的斑马鱼品系中发现,HOPS 的破坏消除了自噬体的成熟,并破坏了从轴突末梢开始的逆行自噬体运输的启动。我们使用 Vps18 的内源性缺失来证实这种表型是由于 HOPS 复合物形成的缺失。最后,我们使用溶酶体蛋白酶的药理学抑制,表明自噬体逆行运输的启动需要自噬体成熟。总之,我们的数据表明,HOPS 介导的融合事件对于通过促进自噬体成熟来启动逆行自噬体运输是至关重要的。这揭示了 HOPS 复合物在神经元自噬中的关键作用,加深了我们对与 HOPS 复合物相关的神经退行性疾病的细胞病理学的理解。