Miao Yawei, Sun Yanna, Zou Wentao, Zhang Xu, Kan Yuanyuan, Zhang Wenqing, Jiang Xinyue, Wang Xunchang, Yang Renqiang, Hao Xiaotao, Geng Longlong, Xu Huajun, Gao Ke
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.
Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P.R. China.
Adv Mater. 2024 Aug;36(33):e2406623. doi: 10.1002/adma.202406623. Epub 2024 Jun 27.
Morphology control is crucial in achieving high-performance organic solar cells (OSCs) and remains a major challenge in the field of OSC. Solid additive is an effective strategy to fine-tune morphology, however, the mechanism underlying isomeric solid additives on blend morphology and OSC performance is still vague and urgently requires further investigation. Herein, two solid additives based on pyridazine or pyrimidine as core units, M1 and M2, are designed and synthesized to explore working mechanism of the isomeric solid additives in OSCs. The smaller steric hindrance and larger dipole moment facilitate better π-π stacking and aggregation in M1-based active layer. The M1-treated all-small-molecule OSCs (ASM OSCs) obtain an impressive efficiency of 17.57%, ranking among the highest values for binary ASM OSCs, with 16.70% for M2-treated counterparts. Moreover, it is imperative to investigate whether the isomerization engineering of solid additives works in state-of-the-art polymer OSCs. M1-treated D18-Cl:PM6:L8-BO-based devices achieve an exceptional efficiency of 19.70% (certified as 19.34%), among the highest values for OSCs. The work provides deep insights into the design of solid additives and clarifies the potential working mechanism for optimizing the morphology and device performance through isomerization engineering of solid additives.
形态控制对于实现高性能有机太阳能电池(OSC)至关重要,并且仍然是OSC领域的一项重大挑战。固体添加剂是微调形态的有效策略,然而,异构固体添加剂对共混物形态和OSC性能的潜在作用机制仍不明确,迫切需要进一步研究。在此,设计并合成了两种以哒嗪或嘧啶为核心单元的固体添加剂M1和M2,以探索异构固体添加剂在OSC中的作用机制。较小的空间位阻和较大的偶极矩有助于在基于M1的活性层中形成更好的π-π堆积和聚集。经M1处理的全小分子OSC(ASM OSC)的效率达到了令人印象深刻的17.57%,跻身二元ASM OSC的最高值之列,而经M2处理的对应物效率为16.70%。此外,研究固体添加剂的异构化工程在最先进的聚合物OSC中是否有效势在必行。经M1处理的基于D18-Cl:PM6:L8-BO的器件实现了19.70%(认证为19.34%)的卓越效率,位列OSC的最高值之中。这项工作为固体添加剂的设计提供了深刻见解,并阐明了通过固体添加剂的异构化工程优化形态和器件性能的潜在作用机制。