Suppr超能文献

超通讯:多智能体强化学习中的基于超图的通讯。

HyperComm: Hypergraph-based communication in multi-agent reinforcement learning.

机构信息

School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China.

School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, Nanjing 210096, China.

出版信息

Neural Netw. 2024 Oct;178:106432. doi: 10.1016/j.neunet.2024.106432. Epub 2024 Jun 10.

Abstract

In the realm of fully cooperative multi-agent reinforcement learning (MARL), effective communication can induce implicit cooperation among agents and improve overall performance. In current communication strategies, agents are allowed to exchange local observations or latent embeddings, which can augment individual local policy inputs and mitigate uncertainty in local decision-making processes. Unfortunately, in previous communication schemes, agents may potentially receive irrelevant information, which increases training difficulty and leads to poor performance in complex settings. Furthermore, most existing works lack the consideration of the impact of small coalitions formed by agents in the multi-agent system. To address these challenges, we propose HyperComm, a novel framework that uses the hypergraph to model the multi-agent system, improving the accuracy and specificity of communication among agents. Our approach brings the concept of hypergraph for the first time in multi-agent communication for MARL. Within this framework, each agent can communicate more effectively with other agents within the same hyperedge, leading to better cooperation in environments with multiple agents. Compared to those state-of-the-art communication-based approaches, HyperComm demonstrates remarkable performance in scenarios involving a large number of agents.

摘要

在完全合作的多智能体强化学习(MARL)领域,有效的通信可以在智能体之间诱导出隐含的合作,并提高整体性能。在当前的通信策略中,允许智能体交换局部观察或潜在嵌入,这可以增强个体局部策略输入,并减轻局部决策过程中的不确定性。不幸的是,在之前的通信方案中,智能体可能会收到不相关的信息,这增加了训练难度,并导致在复杂环境中表现不佳。此外,大多数现有工作都没有考虑多智能体系统中由智能体形成的小联盟的影响。为了解决这些挑战,我们提出了 HyperComm,这是一个使用超图来对多智能体系统建模的新框架,提高了智能体之间通信的准确性和特异性。我们的方法首次将超图的概念引入到多智能体通信的 MARL 中。在这个框架中,每个智能体可以与同一超边内的其他智能体更有效地进行通信,从而在多智能体环境中实现更好的合作。与那些最先进的基于通信的方法相比,HyperComm 在涉及大量智能体的场景中表现出了显著的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验