Suppr超能文献

分层注意力主从式异构多智能体强化学习。

Hierarchical Attention Master-Slave for heterogeneous multi-agent reinforcement learning.

机构信息

College of Information Science and Engineering, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang, 110819, Liaoning, PR China.

College of Information Science and Engineering, Northeastern University, No. 3-11, Wenhua Road, Heping District, Shenyang, 110819, Liaoning, PR China.

出版信息

Neural Netw. 2023 May;162:359-368. doi: 10.1016/j.neunet.2023.02.037. Epub 2023 Mar 4.

Abstract

Most multi-agent reinforcement learning (MARL) approaches optimize strategy by improving itself, while ignoring the limitations of homogeneous agents that may have single function. However, in reality, the complex tasks tend to coordinate various types of agents and leverage advantages from one another. Therefore, it is a vital research issue how to establish appropriate communication among them and optimize decision. To this end, we propose a Hierarchical Attention Master-Slave (HAMS) MARL, where the Hierarchical Attention balances the weight allocation within and among clusters, and the Master-Slave architecture endows agents independent reasoning and individual guidance. By the offered design, information fusion, especially among clusters, is implemented effectively, and excessive communication is avoided, moreover, selective composed action optimizes decision. We evaluate the HAMS on both small and large scale heterogeneous StarCraft II micromanagement tasks. The proposed algorithm achieves the exceptional performance with more than 80% win rates in all evaluation scenarios, which obtains an impressive win rate of over 90% in the largest map. The experiments demonstrate a maximum improvement in win rate of 47% over the best known algorithm. The results show that our proposal outperforms recent state-of-the-art approaches, which provides a novel idea for heterogeneous multi-agent policy optimization.

摘要

大多数多智能体强化学习 (MARL) 方法通过改进自身来优化策略,而忽略了同质智能体可能具有单一功能的局限性。然而,在现实中,复杂的任务往往需要协调各种类型的智能体,并相互利用各自的优势。因此,如何在它们之间建立适当的通信并优化决策是一个重要的研究问题。为此,我们提出了一种分层注意力主从 (HAMS) MARL 方法,其中分层注意力平衡了簇内和簇间的权重分配,主从架构赋予了智能体独立的推理和个体指导。通过所提供的设计,信息融合,特别是在簇间,得到了有效实现,避免了过度的通信,并且选择性组合的动作优化了决策。我们在小尺度和大尺度异构星际争霸 II 微观管理任务上对 HAMS 进行了评估。所提出的算法在所有评估场景中都取得了超过 80%的胜率的优异性能,在最大地图上的胜率超过 90%。实验表明,与最先进的算法相比,我们的方法在胜率上有最大 47%的提高。结果表明,我们的方案优于最近的最先进方法,为异构多智能体策略优化提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验