Suppr超能文献

优化高速公路路段碰撞风险模型:重点关注道路几何设计特征、交通运行状态和碰撞单元的异质影响。

Optimizing crash risk models for freeway segments: A focus on the heterogeneous effects of road geometric design features, traffic operation status, and crash units.

机构信息

Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China.

Beijing Key Laboratory of Traffic Engineering, College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China.

出版信息

Accid Anal Prev. 2024 Sep;205:107665. doi: 10.1016/j.aap.2024.107665. Epub 2024 Jun 19.

Abstract

Traffic crash risk prediction models have been developed to investigate crash occurrence mechanisms and analyze the effects of various traffic operation factors, data on which are collected by densely deployed detectors, on crash risk. However, in China, freeway detectors are widely spaced (the spacing is usually more than 2 km) and the road geometries vary frequently, especially in mountainous areas. Moreover, many freeway sections are located in urban areas and serve commuting functions. Due to the different mechanisms of crash occurrence on road segments with different geometric design features and traffic operation status, it is necessary to consider these heterogeneities in crash risk prediction. In addition to considering observable heterogeneous effects, it is equally important to consider the existence of unobserved heterogeneities among crash units. This study focuses on the effects of different types of heterogeneities on crash risk for segments of the Yongtaiwen Freeway in Zhejiang Province, China, using crash, traffic flow, and road geometric design data. Latent class analysis (LCA), latent profile analysis (LPA), and a combination of both methods are respectively used to classify road segments into subgroups based on road geometric design features, the traffic operation status, and a combination of both. The results reveal that the binary logit model considering the heterogeneous effects of the combination of road geometric design features and the traffic operation status achieves the best performance. Furthermore, binary conditional logit models and grouped random parameter logit models are developed to analyze the unobserved heterogeneity among crash units, and the results show that the latter has a better goodness of fit. Finally, a paradigm of the crash risk prediction for freeway segments with widely-spaced traffic detectors and frequently-changing geometric features is provided for traffic safety management departments.

摘要

交通碰撞事故风险预测模型已经被开发出来,以调查碰撞事故发生的机制,并分析各种交通运行因素对碰撞风险的影响,这些数据是通过密集部署的检测器收集的。然而,在中国,高速公路检测器之间的间距很大(通常超过 2 公里),道路几何形状经常变化,尤其是在山区。此外,许多高速公路路段位于城市地区,具有通勤功能。由于具有不同几何设计特征和交通运行状态的路段发生碰撞事故的机制不同,因此有必要在碰撞事故风险预测中考虑这些异质性。除了考虑可观察到的异质性影响外,考虑碰撞单元之间存在不可观察的异质性同样重要。本研究使用碰撞、交通流量和道路几何设计数据,重点关注不同类型的异质性对中国浙江省永台温高速公路路段碰撞风险的影响。使用潜在类别分析(LCA)、潜在剖面分析(LPA)和这两种方法的组合,分别根据道路几何设计特征、交通运行状态和两者的组合将道路路段分类为子组。结果表明,考虑道路几何设计特征和交通运行状态组合的异质性效应的二元逻辑模型表现最佳。此外,还开发了二元条件逻辑模型和分组随机参数逻辑模型来分析碰撞单元之间的不可观察异质性,结果表明后者具有更好的拟合优度。最后,为具有广泛间距交通检测器和频繁变化的几何特征的高速公路路段提供了一种碰撞风险预测范式,供交通安全管理部门使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验