Suppr超能文献

利用高分辨率交通数据理解城市快速路碰撞机理。

Understanding crash mechanism on urban expressways using high-resolution traffic data.

机构信息

Department of Built Environment, Tokyo Institute of Technology, Nagatsuta-machi, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.

出版信息

Accid Anal Prev. 2013 Aug;57:17-29. doi: 10.1016/j.aap.2013.03.024. Epub 2013 Mar 29.

Abstract

Urban expressways play a vital role in the modern mega cities by serving peak hour traffic alongside reducing travel time for moderate to long distance intra-city trips. Thus, ensuring safety on these roads holds high priority. Little knowledge has been acquired till date regarding crash mechanism on these roads. This study uses high-resolution traffic data collected from the detectors to identify factors influencing crash. It also identifies traffic patterns associated with different types of crashes and explains crash phenomena thereby. Unlike most of the previous studies on conventional expressways, the research separately investigates the basic freeway segments (BFS) and the ramp areas. The study employs random multinomial logit, a random forest of logit models, to rank the variables; expectation maximization clustering algorithm to identify crash prone traffic patterns and classification and regression trees to explain crash phenomena. As accentuated by the study outcome, crash mechanism is not generic throughout the expressway and it varies from the BFS to the ramp vicinities. The level of congestion and speed difference between upstream and downstream traffic best explains crashes and their types for the BFS, whereas, the ramp flow has the highest influence in determining the types of crashes within the ramp vicinities. The paper also discusses about the applicability of different countermeasures, such as, variable speed limits, temporary restriction on lane changing, posting warnings, etc., to attenuate different patterns of hazardous traffic conditions. The study outcome can be utilized in designing location and traffic condition specific proactive road safety management systems for urban expressways.

摘要

城市快速路在现代特大城市中起着至关重要的作用,它们不仅为高峰时段的交通提供服务,还缩短了中长距离的市内出行时间。因此,确保这些道路的安全至关重要。迄今为止,人们对这些道路上的碰撞机制知之甚少。本研究利用从检测器收集的高分辨率交通数据来识别影响碰撞的因素。它还确定了与不同类型碰撞相关的交通模式,并解释了碰撞现象。与传统高速公路上的大多数先前研究不同,该研究分别调查了基本高速公路段(BFS)和匝道区域。该研究采用随机多项逻辑回归、逻辑回归模型的随机森林来对变量进行排序;期望最大化聚类算法来识别易发生碰撞的交通模式;分类回归树来解释碰撞现象。正如研究结果所强调的那样,碰撞机制在整个高速公路上并不通用,它从 BFS 到匝道附近都有所不同。BFS 中,交通拥堵程度和上下游交通速度差异最能解释碰撞及其类型,而匝道流量对确定匝道附近的碰撞类型影响最大。本文还讨论了不同对策的适用性,例如,可变限速、临时限制变道、张贴警告等,以减轻不同类型的危险交通状况。研究结果可用于设计针对城市快速路的特定位置和交通条件的主动道路安全管理系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验