Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
Mol Cell Proteomics. 2024 Aug;23(8):100804. doi: 10.1016/j.mcpro.2024.100804. Epub 2024 Jun 18.
Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-like protein (RAF)-sucrose nonfermenting-1-related protein kinase 2 (SnRK2) kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here, in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput data-independent acquisition-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and SnRK2s, EGTA treatment also activates mitogen-activated protein kinase cascades, Calcium-dependent protein kinases, and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases and receptor-like protein kinases in the osmotic stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca signaling, offering insights into the (exocellular) Ca deprivation during early hyperosmolality sensing and signaling.
渗透胁迫显著抑制植物生长和作物产量,这强调了深入了解潜在分子反应的必要性。先前的研究表明,渗透胁迫可在数分钟内迅速诱导钙内流和信号转导,以及特定蛋白激酶亚类的激活,特别是 Raf 样蛋白 (RAF)-蔗糖非发酵 1 相关蛋白激酶 2 (SnRK2) 激酶级联反应。然而,钙信号与 RAF-SnRK2 激酶级联反应的激活之间的复杂相互作用仍然难以捉摸。在本研究中,我们发现 Raf 样蛋白 (RAF) 激酶在应对渗透冲击时发生过度磷酸化。有趣的是,用钙螯合剂 EGTA 处理可强烈激活 RAF-SnRK2 级联反应,与渗透处理的效果相似。利用基于高通量数据非依赖性采集的磷酸化蛋白质组学,我们揭示了 EGTA 对蛋白质磷酸化的全局影响。除了 RAF 和 SnRK2 的激活外,EGTA 处理还激活丝裂原活化蛋白激酶级联反应、钙依赖性蛋白激酶和受体样蛋白激酶等。通过重叠试验,我们确定了丝裂原活化蛋白激酶激酶激酶激酶和受体样蛋白激酶在渗透胁迫诱导的 RAF-SnRK2 级联反应激活中的潜在作用。我们的发现阐明了 Ca 信号对磷酸化和细胞事件的调节作用,为早期高渗透压感应和信号转导过程中外源 Ca 剥夺提供了深入了解。