Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA.
eScience Institute, University of Washington, WA, Seattle, USA.
Nat Commun. 2024 Jun 20;15(1):5284. doi: 10.1038/s41467-024-49508-2.
mRNA therapeutics are revolutionizing the pharmaceutical industry, but methods to optimize the primary sequence for increased expression are still lacking. Here, we design 5'UTRs for efficient mRNA translation using deep learning. We perform polysome profiling of fully or partially randomized 5'UTR libraries in three cell types and find that UTR performance is highly correlated across cell types. We train models on our datasets and use them to guide the design of high-performing 5'UTRs using gradient descent and generative neural networks. We experimentally test designed 5'UTRs with mRNA encoding megaTAL gene editing enzymes for two different gene targets and in two different cell lines. We find that the designed 5'UTRs support strong gene editing activity. Editing efficiency is correlated between cell types and gene targets, although the best performing UTR was specific to one cargo and cell type. Our results highlight the potential of model-based sequence design for mRNA therapeutics.
mRNA 疗法正在彻底改变制药行业,但提高表达效率的优化方法仍然缺乏。在这里,我们使用深度学习来设计高效 mRNA 翻译的 5'UTR。我们在三种细胞类型中对完全或部分随机化的 5'UTR 文库进行多核糖体分析,发现 UTR 性能在细胞类型之间具有高度相关性。我们在数据集上训练模型,并使用它们通过梯度下降和生成神经网络来指导高性能 5'UTR 的设计。我们使用编码 megaTAL 基因编辑酶的 mRNA 对两种不同的基因靶标和两种不同的细胞系进行了设计的 5'UTR 的实验测试。我们发现设计的 5'UTR 支持强大的基因编辑活性。编辑效率在细胞类型和基因靶标之间相关,尽管表现最好的 UTR 是针对一种货物和细胞类型的。我们的结果强调了基于模型的序列设计在 mRNA 疗法中的潜力。