Suppr超能文献

基于 CT 图像的卷积神经网络对口腔鳞状细胞癌患者人乳头瘤病毒状态的可解释预测模型。

Explainable prediction model for the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma using CNN on CT images.

机构信息

Laboratorio Biostatistica e Bioinformatica, I.R.C.C.S. Istituto Tumori 'Giovanni Paolo II', Bari, Italy.

Radiation Oncology Unit, Dipartimento di Oncoematologia, Ospedale Vito Fazzi, Lecce, Italy.

出版信息

Sci Rep. 2024 Jun 20;14(1):14276. doi: 10.1038/s41598-024-65240-9.

Abstract

Several studies have emphasised how positive and negative human papillomavirus (HPV+  and HPV-, respectively) oropharyngeal squamous cell carcinoma (OPSCC) has distinct molecular profiles, tumor characteristics, and disease outcomes. Different radiomics-based prediction models have been proposed, by also using innovative techniques such as Convolutional Neural Networks (CNNs). Although some of these models reached encouraging predictive performances, there evidence explaining the role of radiomic features in achieving a specific outcome is scarce. In this paper, we propose some preliminary results related to an explainable CNN-based model to predict HPV status in OPSCC patients. We extracted the Gross Tumor Volume (GTV) of pre-treatment CT images related to 499 patients (356 HPV+ and 143 HPV-) included into the OPC-Radiomics public dataset to train an end-to-end Inception-V3 CNN architecture. We also collected a multicentric dataset consisting of 92 patients (43 HPV+ , 49 HPV-), which was employed as an independent test set. Finally, we applied Gradient-weighted Class Activation Mapping (Grad-CAM) technique to highlight the most informative areas with respect to the predicted outcome. The proposed model reached an AUC value of 73.50% on the independent test. As a result of the Grad-CAM algorithm, the most informative areas related to the correctly classified HPV+ patients were located into the intratumoral area. Conversely, the most important areas referred to the tumor edges. Finally, since the proposed model provided additional information with respect to the accuracy of the classification given by the visualization of the areas of greatest interest for predictive purposes for each case examined, it could contribute to increase confidence in using computer-based predictive models in the actual clinical practice.

摘要

多项研究强调了人乳头瘤病毒(HPV+ 和 HPV-)阳性和阴性口腔鳞状细胞癌(OPSCC)具有明显不同的分子特征、肿瘤特征和疾病结局。不同的放射组学预测模型已经被提出,同时也使用了卷积神经网络(CNNs)等创新技术。尽管其中一些模型达到了令人鼓舞的预测性能,但缺乏解释放射组学特征在实现特定结果中的作用的证据。在本文中,我们提出了一些与基于可解释 CNN 的模型相关的初步结果,该模型用于预测 OPSCC 患者的 HPV 状态。我们提取了 499 名患者(356 名 HPV+和 143 名 HPV-)的预处理 CT 图像的大体肿瘤体积(GTV),这些患者包含在 OPC-Radiomics 公共数据集,用于训练端到端的 Inception-V3 CNN 架构。我们还收集了一个由 92 名患者(43 名 HPV+,49 名 HPV-)组成的多中心数据集,作为独立测试集。最后,我们应用了梯度加权类激活映射(Grad-CAM)技术来突出与预测结果相关的最具信息量的区域。所提出的模型在独立测试中达到了 73.50%的 AUC 值。作为 Grad-CAM 算法的结果,与正确分类的 HPV+患者相关的最具信息量的区域位于肿瘤内区域。相反,最重要的区域涉及肿瘤边缘。最后,由于所提出的模型提供了关于分类准确性的额外信息,通过可视化每个检查病例中最感兴趣的区域,它可以有助于提高在实际临床实践中使用基于计算机的预测模型的信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff2/11189928/9bedd7c2f92e/41598_2024_65240_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验