Suppr超能文献

通过氧缺陷调节提高固体氧化物电解池无钴层状钙钛矿阴极的CO吸附在高电压下具有出色的稳定性。

Enhancing the CO Adsorption of the Cobalt-Free Layered Perovskite Cathode for Solid-Oxide Electrolysis Cells Gains Excellent Stability under High Voltages via Oxygen-Defect Adjustment.

作者信息

Wang Yijian, Hu Haibo, Zhao Zhongyi, Zheng Hesheng, Ding Xifeng

机构信息

School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

ACS Appl Mater Interfaces. 2024 Jul 3;16(26):33548-33558. doi: 10.1021/acsami.4c05909. Epub 2024 Jun 20.

Abstract

Solid-oxide electrolysis cells are a clean energy conversion device with the ability to directly electrolyze the conversion of CO to CO efficiently. However, their practical applications are limited due to insufficient CO adsorption performance of the cathode materials. To overcome this issue, the A-site cation deficiency strategy has been applied in a layered perovskite PrBaFeNiO (PBFN) cathode for direct CO electrolysis. The introduction of 5% deficiency at the Pr/Ba site leads to a significant increase in the concentration of oxygen vacancies (nonstoichiometric number δ of oxygen vacancies increased from 0.093 to 0.132), which greatly accelerates the CO adsorption performance as well as the O transport capacity toward the CO reduction reaction (CORR). CO temperature-programmed desorption indicates that A-site cation-deficient (PrBa)FeNiO (PB95FN) shows a larger desorption peak area and a higher desorption temperature. PB95FN also exhibits a greater presence of carbonate in Fourier transform infrared (FT-IR) spectroscopy. The electrical conductivity relaxation test shows that the introduction of the 5% A-site deficiency effectively improves the surface oxygen exchange and diffusion kinetics of PB95FN. The current density of the electrolysis cell with the (PrBa)FeNiO (PB95FN) cathode reaches 0.876 A·cm under 1.5 V at 800 °C, which is 41% higher than that of PB100FN. Moreover, the PB95FN cathode demonstrates excellent long-term stability over 100 h and better short-term stability than PB100FN under high voltages, which can be ascribed to the enhanced CO adsorption performance. The PB95FN cathode maintains a porous structure and tightly binds to the electrolyte after stability testing. This study highlights the potential of regulating oxygen defects in layered perovskite PrBaFeNiO cathode materials via incorporation of cation deficiency toward high-temperature CO electrolysis.

摘要

固体氧化物电解池是一种清洁能源转换装置,能够高效地直接将一氧化碳(CO)电解转化为二氧化碳(CO₂)。然而,由于阴极材料对CO的吸附性能不足,其实际应用受到限制。为了克服这一问题,A位阳离子缺陷策略已应用于层状钙钛矿PrBaFeNiO(PBFN)阴极以进行直接CO电解。在Pr/Ba位点引入5%的缺陷导致氧空位浓度显著增加(氧空位的非化学计量数δ从0.093增加到0.132),这极大地加速了CO吸附性能以及氧向CO还原反应(CORR)的传输能力。CO程序升温脱附表明,A位阳离子缺陷型(PrBa)FeNiO(PB95FN)具有更大的脱附峰面积和更高的脱附温度。PB95FN在傅里叶变换红外(FT-IR)光谱中也显示出更多的碳酸盐存在。电导率弛豫测试表明,引入5%的A位缺陷有效地改善了PB95FN的表面氧交换和扩散动力学。具有(PrBa)FeNiO(PB95FN)阴极的电解池在800℃、1.5V下的电流密度达到0.876A·cm⁻²,比PB100FN高41%。此外,PB95FN阴极在100h以上表现出优异的长期稳定性,在高电压下比PB100FN具有更好的短期稳定性,这可归因于增强的CO吸附性能。稳定性测试后,PB95FN阴极保持多孔结构并与电解质紧密结合。本研究突出了通过引入阳离子缺陷来调节层状钙钛矿PrBaFeNiO阴极材料中的氧缺陷以实现高温CO电解的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验