Department of Hepatobiliary Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
Beijing Institute of Radiation Medicine, Beijing, PR China.
Comput Biol Med. 2024 Aug;178:108663. doi: 10.1016/j.compbiomed.2024.108663. Epub 2024 May 28.
Robust and practical prognosis prediction models for hepatocellular carcinoma (HCC) patients play crucial roles in personalized precision medicine.
We recruited two independent HCC cohorts (discovery cohort and validation cohort), totally consisting of 222 HCC patients undergone surgical resection. We quantified the expressions of immune-related proteins (CD8, CD68, CD163, PD-1 and PD-L1) in paired HCC tissues and non-tumor liver tissues from these HCC patients using immunohistochemistry (mIHC) assays. We constructed the HCC prognosis prediction model using five different machine learning methods based on the patients in the discovery cohort, such as Cox proportional hazards (CoxPH).
We identified 19 features that were associated with overall survival of HCC patients in the discovery cohort (p < 0.1), such as immune-related features CD68 and CD8 cell infiltration. We constructed five HCC prognosis prediction models using five different machine learning methods. Among the five different machine learning models, the CoxPH model achieved the best performance (area under the curve [AUC], 0.839; C-index, 0.779). According to the risk score from CoxPH model, we divided HCC patients into high-risk group/low-risk group. In both discovery cohort and validation cohort, the patients in low-risk group showed longer overall survival compared with those in high-risk group (p = 1.8 × 10 and 3.4 × 10, respectively). Moreover, our novel scoring system efficiently predicted the 6, 12, and 18 months survival rate of HCC patients with AUC >0.75 in both discovery cohort and validation cohort. In addition, we found that the scoring system could also distinguish the patients with high/low risks of relapse in both discovery cohort and validation cohort (p = 0.00015 and 0.00012).
The novel CoxPH-based risk scoring model on clinical, laboratory-testing and immune-related features showed high prediction efficiencies for overall survival and recurrence of HCCs undergone surgical resection. Our results may be helpful to optimize clinical follow-up or therapeutic interventions.
稳健实用的肝细胞癌(HCC)患者预后预测模型在精准医学个体化治疗中具有重要作用。
我们招募了两个独立的 HCC 队列(发现队列和验证队列),共纳入 222 例行手术切除的 HCC 患者。我们使用免疫组织化学(mIHC)检测试剂盒检测这些 HCC 患者配对的 HCC 组织和非肿瘤肝组织中免疫相关蛋白(CD8、CD68、CD163、PD-1 和 PD-L1)的表达。我们使用五种不同的机器学习方法(包括 Cox 比例风险(CoxPH))基于发现队列中的患者构建 HCC 预后预测模型。
我们在发现队列中确定了 19 个与 HCC 患者总生存期相关的特征(p<0.1),例如免疫相关特征 CD68 和 CD8 细胞浸润。我们使用五种不同的机器学习方法构建了五个 HCC 预后预测模型。在这五种不同的机器学习模型中,CoxPH 模型的表现最佳(曲线下面积 [AUC],0.839;C 指数,0.779)。根据 CoxPH 模型的风险评分,我们将 HCC 患者分为高风险组/低风险组。在发现队列和验证队列中,低风险组患者的总生存期均长于高风险组(p=1.8×10-3 和 3.4×10-3,分别)。此外,我们的新评分系统在发现队列和验证队列中均能有效预测 HCC 患者 6、12 和 18 个月的生存率,AUC>0.75。此外,我们发现该评分系统还可以区分发现队列和验证队列中复发风险高低的患者(p=0.00015 和 0.00012)。
基于临床、实验室检测和免疫相关特征的新型 CoxPH 风险评分模型对手术切除的 HCC 患者的总生存期和复发具有较高的预测效率。我们的研究结果可能有助于优化临床随访或治疗干预。