Suppr超能文献

基于小波能量熵约束的小波金字塔递归神经网络的医学图像超分辨率分析。

Analysis of medical images super-resolution via a wavelet pyramid recursive neural network constrained by wavelet energy entropy.

机构信息

School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu, 610106, Sichuan, China; School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.

School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.

出版信息

Neural Netw. 2024 Oct;178:106460. doi: 10.1016/j.neunet.2024.106460. Epub 2024 Jun 12.

Abstract

Recently, multi-resolution pyramid-based techniques have emerged as the prevailing research approach for image super-resolution. However, these methods typically rely on a single mode of information transmission between levels. In our approach, a wavelet pyramid recursive neural network (WPRNN) based on wavelet energy entropy (WEE) constraint is proposed. This network transmits previous-level wavelet coefficients and additional shallow coefficient features to capture local details. Besides, the parameter of low- and high-frequency wavelet coefficients within each pyramid level and across pyramid levels is shared. A multi-resolution wavelet pyramid fusion (WPF) module is devised to facilitate information transfer across network pyramid levels. Additionally, a wavelet energy entropy loss is proposed to constrain the reconstruction of wavelet coefficients from the perspective of signal energy distribution. Finally, our method achieves the competitive reconstruction performance with the minimal parameters through an extensive series of experiments conducted on publicly available datasets, which demonstrates its practical utility.

摘要

最近,基于多分辨率金字塔的技术已经成为图像超分辨率的主流研究方法。然而,这些方法通常依赖于各级之间的单一信息传输模式。在我们的方法中,提出了一种基于小波能量熵(WEE)约束的小波金字塔递归神经网络(WPRNN)。该网络传输前一级的小波系数和额外的浅层系数特征,以捕获局部细节。此外,在每个金字塔级别内和跨金字塔级别共享低和高频小波系数的参数。设计了一个多分辨率小波金字塔融合(WPF)模块,以促进网络金字塔级别之间的信息传递。此外,还提出了一种小波能量熵损失,从信号能量分布的角度约束小波系数的重建。最后,通过在公开数据集上进行的一系列广泛实验,我们的方法在竞争的重建性能下使用最小的参数,证明了其实际效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验