Suppr超能文献

GC-Net:用于医学图像分割的全局上下文网络。

GC-Net: Global context network for medical image segmentation.

机构信息

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China; College of Internet of Things Engineering, HoHai University Changzhou, China.

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.

出版信息

Comput Methods Programs Biomed. 2020 Jul;190:105121. doi: 10.1016/j.cmpb.2019.105121. Epub 2019 Oct 4.

Abstract

BACKGROUND AND OBJECTIVE

Medical image segmentation plays an important role in many clinical applications such as disease diagnosis, surgery planning, and computer-assisted therapy. However, it is a very challenging task due to variant images qualities, complex shapes of objects, and the existence of outliers. Recently, researchers have presented deep learning methods to segment medical images. However, these methods often use the high-level features of the convolutional neural network directly or the high-level features combined with the shallow features, thus ignoring the role of the global context features for the segmentation task. Consequently, they have limited capability on extensive medical segmentation tasks. The purpose of this work is to devise a neural network with global context feature information for accomplishing medical image segmentation of different tasks.

METHODS

The proposed global context network (GC-Net) consists of two components; feature encoding and decoding modules. We use multiple convolutions and batch normalization layers in the encoding module. On the other hand, the decoding module is formed by a proposed global context attention (GCA) block and squeeze and excitation pyramid pooling (SEPP) block. The GCA module connects low-level and high-level features to produce more representative features, while the SEPP module increases the size of the receptive field and the ability of multi-scale feature fusion. Moreover, a weighted cross entropy loss is designed to better balance the segmented and non-segmented regions.

RESULTS

The proposed GC-Net is validated on three publicly available datasets and one local dataset. The tested medical segmentation tasks include segmentation of intracranial blood vessel, retinal vessels, cell contours, and lung. Experiments demonstrate that, our network outperforms state-of-the-art methods concerning several commonly used evaluation metrics.

CONCLUSION

Medical segmentation of different tasks can be accurately and effectively achieved by devising a deep convolutional neural network with a global context attention mechanism.

摘要

背景与目的

医学图像分割在疾病诊断、手术规划和计算机辅助治疗等许多临床应用中起着重要作用。然而,由于图像质量的变化、物体形状的复杂性和异常值的存在,这是一项极具挑战性的任务。最近,研究人员提出了用于分割医学图像的深度学习方法。然而,这些方法通常直接使用卷积神经网络的高层特征,或者使用高层特征与浅层特征相结合,从而忽略了全局上下文特征对分割任务的作用。因此,它们在广泛的医学分割任务中能力有限。本工作的目的是设计一种具有全局上下文特征信息的神经网络,以完成不同任务的医学图像分割。

方法

所提出的全局上下文网络(GC-Net)由两个组件组成;特征编码和解码模块。我们在编码模块中使用了多个卷积和批量归一化层。另一方面,解码模块由一个提出的全局上下文注意力(GCA)块和挤压和激励金字塔池化(SEPP)块组成。GCA 模块连接低层次和高层次的特征,以产生更具代表性的特征,而 SEPP 模块则增加了感受野的大小和多尺度特征融合的能力。此外,设计了加权交叉熵损失函数,以更好地平衡分割和非分割区域。

结果

所提出的 GC-Net 在三个公开可用的数据集和一个本地数据集上进行了验证。所测试的医学分割任务包括颅内血管、视网膜血管、细胞轮廓和肺部的分割。实验表明,与几种常用的评估指标相比,我们的网络在性能上优于最先进的方法。

结论

通过设计具有全局上下文注意机制的深层卷积神经网络,可以准确有效地实现不同任务的医学分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验