Lai Wei-Sheng, Huang Jia-Bin, Ahuja Narendra, Yang Ming-Hsuan
IEEE Trans Pattern Anal Mach Intell. 2019 Nov;41(11):2599-2613. doi: 10.1109/TPAMI.2018.2865304. Epub 2018 Aug 13.
Convolutional neural networks have recently demonstrated high-quality reconstruction for single image super-resolution. However, existing methods often require a large number of network parameters and entail heavy computational loads at runtime for generating high-accuracy super-resolution results. In this paper, we propose the deep Laplacian Pyramid Super-Resolution Network for fast and accurate image super-resolution. The proposed network progressively reconstructs the sub-band residuals of high-resolution images at multiple pyramid levels. In contrast to existing methods that involve the bicubic interpolation for pre-processing (which results in large feature maps), the proposed method directly extracts features from the low-resolution input space and thereby entails low computational loads. We train the proposed network with deep supervision using the robust Charbonnier loss functions and achieve high-quality image reconstruction. Furthermore, we utilize the recursive layers to share parameters across as well as within pyramid levels, and thus drastically reduce the number of parameters. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of run-time and image quality.
卷积神经网络最近在单图像超分辨率的高质量重建方面展现出了卓越性能。然而,现有方法通常需要大量的网络参数,并且在运行时为了生成高精度的超分辨率结果需要承担繁重的计算负荷。在本文中,我们提出了深度拉普拉斯金字塔超分辨率网络,用于快速且准确的图像超分辨率。所提出的网络在多个金字塔层级上逐步重建高分辨率图像的子带残差。与现有方法中涉及双三次插值进行预处理(这会导致生成大尺寸特征图)不同,所提出的方法直接从低分辨率输入空间中提取特征,从而降低了计算负荷。我们使用鲁棒的Charbonnier损失函数通过深度监督来训练所提出的网络,并实现了高质量的图像重建。此外,我们利用递归层在金字塔层级之间以及层级内部共享参数,从而大幅减少了参数数量。在基准数据集上进行的广泛定量和定性评估表明,所提出的算法在运行时间和图像质量方面均优于当前的先进方法。