Suppr超能文献

基于神经网络模式识别的乳腺病变超声图像灰度强度直方图鉴别良恶性病变的分析研究

Neural Network Pattern Recognition of Ultrasound Image Gray Scale Intensity Histograms of Breast Lesions to Differentiate Between Benign and Malignant Lesions: Analytical Study.

作者信息

Ramachandran Arivan, Kathavarayan Ramu Shivabalan

机构信息

Postgraduate Institute of Medical Education and Research, Chandigarh, India.

Mahatma Gandhi Medical College and Research Institute, Puducherry, India.

出版信息

JMIR Biomed Eng. 2021 Jun 2;6(2):e23808. doi: 10.2196/23808.

Abstract

BACKGROUND

Ultrasound-based radiomic features to differentiate between benign and malignant breast lesions with the help of machine learning is currently being researched. The mean echogenicity ratio has been used for the diagnosis of malignant breast lesions. However, gray scale intensity histogram values as a single radiomic feature for the detection of malignant breast lesions using machine learning algorithms have not been explored yet.

OBJECTIVE

This study aims to assess the utility of a simple convolutional neural network in classifying benign and malignant breast lesions using gray scale intensity values of the lesion.

METHODS

An open-access online data set of 200 ultrasonogram breast lesions were collected, and regions of interest were drawn over the lesions. The gray scale intensity values of the lesions were extracted. An input file containing the values and an output file consisting of the breast lesions' diagnoses were created. The convolutional neural network was trained using the files and tested on the whole data set.

RESULTS

The trained convolutional neural network had an accuracy of 94.5% and a precision of 94%. The sensitivity and specificity were 94.9% and 94.1%, respectively.

CONCLUSIONS

Simple neural networks, which are cheap and easy to use, can be applied to diagnose malignant breast lesions with gray scale intensity values obtained from ultrasonogram images in low-resource settings with minimal personnel.

摘要

背景

目前正在研究借助机器学习利用基于超声的放射组学特征来区分乳腺良恶性病变。平均回声率已用于乳腺恶性病变的诊断。然而,尚未探索将灰度强度直方图值作为使用机器学习算法检测乳腺恶性病变的单一放射组学特征。

目的

本研究旨在评估一种简单的卷积神经网络利用病变灰度强度值对乳腺良恶性病变进行分类的效用。

方法

收集了一个包含200个超声乳腺病变的开放获取在线数据集,并在病变上绘制感兴趣区域。提取病变的灰度强度值。创建一个包含这些值的输入文件和一个由乳腺病变诊断组成的输出文件。使用这些文件对卷积神经网络进行训练,并在整个数据集上进行测试。

结果

训练后的卷积神经网络准确率为94.5%,精确率为94%。敏感性和特异性分别为94.9%和94.1%。

结论

简单的神经网络成本低廉且易于使用,可应用于在低资源环境中以最少人员利用超声图像获得的灰度强度值来诊断乳腺恶性病变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d2/11041429/abfa92b99fd1/biomedeng_v6i2e23808_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验