Suppr超能文献

评分啮齿动物心肌病严重程度的组内和组间一致性及其与基于人工智能评分的关系。

Inter-Rater and Intra-Rater Agreement in Scoring Severity of Rodent Cardiomyopathy and Relation to Artificial Intelligence-Based Scoring.

机构信息

Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA.

Social & Scientific Systems, Inc., Durham, North Carolina, USA.

出版信息

Toxicol Pathol. 2024 Jul;52(5):258-265. doi: 10.1177/01926233241259998. Epub 2024 Jun 22.

Abstract

We previously developed a computer-assisted image analysis algorithm to detect and quantify the microscopic features of rodent progressive cardiomyopathy (PCM) in rat heart histologic sections and validated the results with a panel of five veterinary toxicologic pathologists using a multinomial logistic model. In this study, we assessed both the inter-rater and intra-rater agreement of the pathologists and compared pathologists' ratings to the artificial intelligence (AI)-predicted scores. Pathologists and the AI algorithm were presented with 500 slides of rodent heart. They quantified the amount of cardiomyopathy in each slide. A total of 200 of these slides were novel to this study, whereas 100 slides were intentionally selected for repetition from the previous study. After a washout period of more than six months, the repeated slides were examined to assess intra-rater agreement among pathologists. We found the intra-rater agreement to be substantial, with weighted Cohen's kappa values ranging from k = 0.64 to 0.80. Intra-rater variability is not a concern for the deterministic AI. The inter-rater agreement across pathologists was moderate (Cohen's kappa k = 0.56). These results demonstrate the utility of AI algorithms as a tool for pathologists to increase sensitivity and specificity for the histopathologic assessment of the heart in toxicology studies.

摘要

我们之前开发了一种计算机辅助图像分析算法,用于检测和量化啮齿动物进行性心肌病 (PCM) 在大鼠心脏组织切片中的微观特征,并使用多项逻辑回归模型验证了该算法的结果,该模型由五名兽医毒理学病理学家组成。在这项研究中,我们评估了病理学家的组内和组间一致性,并将病理学家的评分与人工智能 (AI) 预测的评分进行了比较。病理学家和人工智能算法都被提供了 500 张啮齿动物心脏的幻灯片。他们对每张幻灯片中的心肌病程度进行了量化。这些幻灯片中有 200 张是本研究中新增的,而 100 张是从之前的研究中有意选择重复的。经过六个月以上的洗脱期,对重复的幻灯片进行了检查,以评估病理学家之间的组内一致性。我们发现组内一致性非常高,加权 Cohen's kappa 值范围从 k = 0.64 到 0.80。对于确定性 AI 来说,组内变异性不是问题。病理学家之间的组间一致性为中等(Cohen's kappa k = 0.56)。这些结果表明,人工智能算法作为病理学家的工具具有实用性,可以提高毒理学研究中心脏组织病理学评估的敏感性和特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e4/11412787/e81c9a887690/nihms-1996664-f0001.jpg

相似文献

本文引用的文献

1
Artificial intelligence in diagnostic pathology.人工智能在诊断病理学中的应用。
Diagn Pathol. 2023 Oct 3;18(1):109. doi: 10.1186/s13000-023-01375-z.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验