Wu Wenbin, Zhang Ping, Chen Siqi, Liu Xiaohong, Feng Guilin, Zuo Meihua, Xing Wangyan, Zhang Bin, Fan Weifeng, Zhang Heng, Zhang Ping, Zhang Jie, Xiang Wei
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
J Colloid Interface Sci. 2024 Nov 15;674:1-8. doi: 10.1016/j.jcis.2024.06.136. Epub 2024 Jun 21.
O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na transfer channel and irreversible phase transitions of O3 phase during sodiation/desodiation process. Constructing O3/P2 multiphase structures has been proven to be an effective strategy to overcome these challenges. In this study, we synthesized bi-phasic structured O3/P2 Na(NiFeCuMn)MnO (x = 0.01, 0.02, 0.03, 0.04, 0.05) materials through Mn doping during sodiation process. Benefiting from surface P2 phase layer with the enhanced Na transfer dynamics and high structural stability, the Na(NiFeCuMn)MnO (NFCM-M2) cathode delivers a reversible capacity of 139.1 mA h g at 0.1 C, and retains 71.4 % of its original capacity after 300 cycles at 1 C. Our work provides useful guidance for designing multiphase cathodes and offers new insights into the structure-performance correlation for sodium-ion cathode materials.
O3相层状氧化物因其高容量和良好的初始库仑效率,是钠离子电池极具吸引力的正极材料。然而,由于Na传输通道狭窄以及在脱钠/嵌钠过程中O3相的不可逆相变,它们的倍率性能和长循环寿命并不理想。构建O3/P2多相结构已被证明是克服这些挑战的有效策略。在本研究中,我们通过在嵌钠过程中进行Mn掺杂,合成了双相结构的O3/P2 Na(NiFeCuMn)MnO(x = 0.01、0.02、0.03、0.04、0.05)材料。受益于具有增强的Na传输动力学和高结构稳定性的表面P2相层,Na(NiFeCuMn)MnO(NFCM-M2)正极在0.1 C下具有139.1 mA h g的可逆容量,并且在1 C下循环300次后仍保留其原始容量的71.4%。我们的工作为设计多相正极提供了有用的指导,并为钠离子正极材料的结构-性能相关性提供了新的见解。