Zhou Jingkai, Liu Jing, Li Yanyan, Zhao Zhongjun, Zhou Pengfei, Wu Xiaozhong, Tang Xiaonan, Zhou Jin
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
J Colloid Interface Sci. 2023 May 15;638:758-767. doi: 10.1016/j.jcis.2023.02.001. Epub 2023 Feb 4.
The P2/O3 biphasic layered oxide (NaMnMO, M: doping elements) is a cathode family with great promise for sodium-ion batteries (SIBs) because of their tunable electrochemical performance and low cost. However, the ultrahigh initial coulombic efficiency (ICE) and inferior cycling performance of P2/O3-NaMnMO need to be improved for practical application. Herein, Ni/Cu co-doped P2/O3-NaMnNiCuO materials are well-designed. The ultrahigh ICE can be restrained by altering the ratio of P2/O3 via adjusting Ni content, and the structural stability can be improved by Cu doping via enlarging parameter c of O3 phase and suppressing irreversible P2-O2 phase transformation. The optimal P2/O3-NaMnNiCuO delivers a capacity of 142.4 with ICE of 107.8%, superior capacity retention in the temperature range of -40 ∼ 30 °C, and rate performance of 95.9 mAh g at 1.2 A g. The overall storage mechanism of P2/O3-NaMnNiCuO is revealed by the combination of electrochemical profiles, in situ X-ray diffraction, and first-principles calculations. The Na-ion full battery based on P2/O3-NaMnNiCuO cathode can achieve a remarkable energy density of 306.9 Wh kg with a power density of 695.5 W kg at 200 mA g. This work may shed light on the rational design of high-performance P2/O3 biphasic layered cathode for SIBs.
P2/O3双相层状氧化物(NaMnMO,M:掺杂元素)是一类对钠离子电池(SIB)极具前景的阴极材料,因其具有可调节的电化学性能和低成本。然而,P2/O3-NaMnMO的超高初始库仑效率(ICE)和较差的循环性能需要改进以实现实际应用。在此,精心设计了Ni/Cu共掺杂的P2/O3-NaMnNiCuO材料。通过调节Ni含量改变P2/O3的比例可以抑制超高ICE,通过Cu掺杂扩大O3相的参数c并抑制不可逆的P2-O2相变可以提高结构稳定性。最优的P2/O3-NaMnNiCuO的容量为142.4,ICE为107.8%,在-40至30°C的温度范围内具有优异的容量保持率,在1.2 A g下的倍率性能为95.9 mAh g。通过电化学曲线、原位X射线衍射和第一性原理计算相结合,揭示了P2/O3-NaMnNiCuO的整体存储机制。基于P2/O3-NaMnNiCuO阴极的钠离子全电池在200 mA g下可实现30