Wang Ting, Zhao Weifang, Ren Ran, Lan Huilin, Zhou Tengfei, Hu Juncheng, Jiang Qingqing
School of Chemistry and Materials Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan 430074, China.
Ganfeng Li Energy Technology Co., Ltd., Xinyu 338000, Jiangxi, China.
J Colloid Interface Sci. 2024 Nov 15;674:19-28. doi: 10.1016/j.jcis.2024.06.146. Epub 2024 Jun 20.
Exploring robust electrode materials which could permit fast and reversible insertion/extraction of large K is a crucial challenge for potassium-ion batteries (PIBs). Smart interfacial design could facilitate electron/ion transport as well as assure the integrity of electrode. Herein, Cetyltrimethylammonium bromide (CTAB) was found to play bifunctional roles in construction of NbCT@MoSe heterostructure. Firstly, functionalization of CTAB on the surface of NbCT could influence the subsequent growth of MoSe by electrostatic effect, stereochemical effect and the synergetic Lewis acid-base interaction, leading to the formation of NbCT@MoSe with tiled heterostructure. Secondly, the interlayer spacing of NbCT was expanded from 0.77 to 1.21 nm owing to the pillar effect of CTAB. As excepted, the capacity retention was 80 % from 100 mA g (406 mA h g) to 1000 mA g concerning rate capability and the specific capacity maintained at 240 mA h g (at 2000 mA g) over 300 cycles. The calculated D values from Galvanostatic intermittent titration technique (GITT) measurement of the titled C-T-NbCT@MoSe@C electrode is two orders of magnitude larger than the traditional T-NbCT@MoSe@C electrode, further confirming intimate interface between MoSe and NbCT could provide convenient potassium-ion transport channels and fast diffusion kinetics. Finally, ex-situ characterizations at different charging and discharging voltage stages, including ex-situ XRD/Raman/HRTEM/XPS have been carried out to reveal the potassium storage mechanism. This work provides a facile strategy for the regulation of interface engineering by the assist of CTAB which could extend to other MXenes-TMDs (Transition metal dichalcogenides) hybrid electrodes.
探索能够实现大尺寸钾离子快速可逆嵌入/脱出的坚固电极材料,是钾离子电池(PIB)面临的一项关键挑战。巧妙的界面设计能够促进电子/离子传输,并确保电极的完整性。在此,发现十六烷基三甲基溴化铵(CTAB)在构建NbCT@MoSe异质结构中发挥着双重功能。首先,CTAB在NbCT表面的功能化可通过静电效应、立体化学效应以及协同的路易斯酸碱相互作用影响MoSe的后续生长,从而形成具有平铺异质结构的NbCT@MoSe。其次,由于CTAB的柱撑效应,NbCT的层间距从0.77纳米扩大到了1.21纳米。不出所料,关于倍率性能,容量保持率从100 mA g(406 mA h g)到1000 mA g为80%,并且在300次循环中,比容量在2000 mA g时保持在240 mA h g。通过恒电流间歇滴定技术(GITT)测量得到的标题为C-T-NbCT@MoSe@C电极的计算D值比传统的T-NbCT@MoSe@C电极大两个数量级,进一步证实MoSe和NbCT之间紧密的界面能够提供便利的钾离子传输通道和快速的扩散动力学。最后,已进行不同充放电电压阶段的非原位表征,包括非原位XRD/拉曼/HRTEM/XPS,以揭示钾存储机制。这项工作提供了一种通过CTAB辅助调节界面工程的简便策略,该策略可扩展到其他MXenes-过渡金属二硫属化物(TMDs)混合电极。