Suppr超能文献

调控MoO/MoSe异质界面提升钠/钾存储的高倍率性能和耐久性

Manipulation of the MoO/MoSe Heterointerface Boosting High Rate and Durability for Sodium/Potassium Storage.

作者信息

Yu Jian, Cao Yun-Dong, Wang Ming-Liang, Fan Lin-Lin, Sun Wen-Guang, Qi Bin, Zhang Yu-Xi, Dong Xin-Yang, Gao Guang-Gang

机构信息

Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, 250022 Jinan, China.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 17;14(32):36592-36601. doi: 10.1021/acsami.2c08080. Epub 2022 Aug 5.

Abstract

The main challenge for sodium/potassium ion storage is to find the suitable host materials to accommodate the larger-sized Na/K and conquer the sluggish chemical kinetics. Herein, by selenation of polyoxometalate in electrospinning fiber, a novel MoO/MoSe heterostructure embedded in one-dimensional (1D) N,P-doped carbon nanofiber (MoO/MoSe@NPC) is rationally constructed to show distinct enhancement of rate performance and cycle life for sodium ion batteries (SIBs) and potassium ion batteries (PIBs). The 1D skeleton of MoO/MoSe@NPC decreases the diffusion pathway of Na/K, and the doping of N/P heteroatoms in carbon fiber creates abundant active sites and provides good reachability for Na/K transportation. MoSe nanosheets grow in the bulk phase of MoO local phase transformation to achieve effective and firm heterointerfaces. Especially, the exposure extent of heterointerfaces can be controlled by treatment temperature during the preparation process, and the optimized heterointerfaces result in an ideal synergic effect between MoO and MoSe. DFT calculations confirm that the internal electric field in the heterogeneous interface guides the electron transfer from MoO to MoSe, combined with strong adsorption capacity toward sodium/potassium, facilitating ion/electron transfer kinetics. It is confirmed that the MoO/MoSe@NPC anode for SIBs delivers 382 mA h g under 0.1 A g upon 200 cycles; meanwhile, a reversible capacity of 266 mA h g is maintained even under 2 A g after 2000 cycles. For PIBs, it can reach up to 216 mA h g in the 200th cycle and still retain 125 mA h g after 2000 cycles under 1 A g. This study opens up a new interface manipulation strategy for the design of anode materials to boost fast Na/K storage kinetics.

摘要

钠/钾离子存储面临的主要挑战是找到合适的主体材料来容纳尺寸较大的Na/K离子,并克服缓慢的化学动力学。在此,通过在静电纺丝纤维中对多金属氧酸盐进行硒化处理,合理构建了一种嵌入一维(1D)N、P掺杂碳纳米纤维(MoO/MoSe@NPC)的新型MoO/MoSe异质结构,以显著提高钠离子电池(SIBs)和钾离子电池(PIBs)的倍率性能和循环寿命。MoO/MoSe@NPC的一维骨架缩短了Na/K离子的扩散路径,碳纤维中N/P杂原子的掺杂产生了丰富的活性位点,并为Na/K离子传输提供了良好的可达性。MoSe纳米片在MoO的体相内生长,通过局部相变形成有效且牢固的异质界面。特别是,在制备过程中可通过处理温度控制异质界面的暴露程度,优化后的异质界面在MoO和MoSe之间产生了理想的协同效应。密度泛函理论(DFT)计算证实,异质界面中的内电场引导电子从MoO转移到MoSe,同时对钠/钾离子具有较强的吸附能力,促进了离子/电子转移动力学。结果表明,用于SIBs的MoO/MoSe@NPC负极在0.1 A g电流下200次循环后容量为382 mA h g;同时,即使在2 A g电流下循环2000次后仍保持266 mA h g的可逆容量。对于PIBs,在1 A g电流下第200次循环时容量可达216 mA h g,循环2000次后仍保留125 mA h g。本研究为设计阳极材料以加速快速Na/K存储动力学开辟了一种新的界面调控策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验