Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
Departments of Chemistry and Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
J Mol Biol. 2024 Aug 15;436(16):168673. doi: 10.1016/j.jmb.2024.168673. Epub 2024 Jun 21.
The aggregation pathway of transthyretin (TTR) proceeds through rate-limiting dissociation of the tetramer (a dimer of dimers) and partial misfolding of the resulting monomer, which assembles into amyloid structures through a downhill polymerization mechanism. The structural features of the aggregation-prone monomeric intermediate are poorly understood. NMR relaxation dispersion offers a unique opportunity to characterize amyloidogenic intermediates when they exchange on favorable timescales with NMR-visible ground states. Here we use NMR to characterize the structure and conformational dynamics of the monomeric F87E mutant of human TTR. Chemical shifts derived from analysis of multinuclear relaxation dispersion data provide insights into the structure of a low-lying excited state that exchanges with the ground state of the F87E monomer at a rate of 3800 s. Disruption of the subunit interfaces of the TTR tetramer leads to destabilization of edge strands in both β-sheets of the F87E monomer. Conformational fluctuations are propagated through the entire hydrogen bonding network of the DAGH β-sheet, from the inner β-strand H, which forms the strong dimer-dimer interface in the TTR tetramer, to outer strand D which is unfolded in TTR fibrils. Fluctuations are also propagated from the AB loop in the weak dimer-dimer interface to the EF helix, which undergoes structural remodeling in fibrils. The conformational fluctuations in both regions are enhanced at acidic pH where amyloid formation is most favorable. The relaxation dispersion data provide insights into the conformational dynamics of the amyloidogenic state of monomeric TTR that predispose it for structural remodeling and progression to amyloid fibrils.
转甲状腺素蛋白(TTR)的聚集途径是通过四聚体(二聚体的二聚体)的限速解离和随后单体的部分错误折叠进行的,由此产生的单体通过 downhill 聚合机制组装成淀粉样结构。易于聚集的单体中间态的结构特征了解甚少。NMR 弛豫弥散为在有利的时间尺度上与 NMR 可见的基态进行交换时,表征淀粉样中间态提供了独特的机会。在这里,我们使用 NMR 来表征人 TTR 的 F87E 突变体的单体结构和构象动力学。从多核弛豫弥散数据分析得出的化学位移提供了对低能激发态结构的深入了解,该激发态以 3800 s 的速率与 F87E 单体的基态交换。TTR 四聚体亚基界面的破坏导致 F87E 单体中两个 β-片层的边缘链不稳定。构象波动通过 DAGH β-片层的整个氢键网络传播,从形成 TTR 四聚体中强二聚体-二聚体界面的内部β-链 H 到在 TTR 原纤维中展开的外部链 D。波动也从弱二聚体-二聚体界面的 AB 环传播到 EF 螺旋,该螺旋在原纤维中经历结构重塑。在酸性 pH 值下,淀粉样形成最有利的情况下,这两个区域的构象波动都会增强。弛豫弥散数据提供了对单体 TTR 的淀粉样状态的构象动力学的深入了解,这使其易于结构重塑并进展为淀粉样纤维。