Suppr超能文献

基于集成方法的声带分割和障碍分类的机器学习方法。

A machine learning approach for vocal fold segmentation and disorder classification based on ensemble method.

机构信息

Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka, 1216, Bangladesh.

Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Sci Rep. 2024 Jun 23;14(1):14435. doi: 10.1038/s41598-024-64987-5.

Abstract

In the healthcare domain, the essential task is to understand and classify diseases affecting the vocal folds (VFs). The accurate identification of VF disease is the key issue in this domain. Integrating VF segmentation and disease classification into a single system is challenging but important for precise diagnostics. Our study addresses this challenge by combining VF illness categorization and VF segmentation into a single integrated system. We utilized two effective ensemble machine learning methods: ensemble EfficientNetV2L-LGBM and ensemble UNet-BiGRU. We utilized the EfficientNetV2L-LGBM model for classification, achieving a training accuracy of 98.88%, validation accuracy of 97.73%, and test accuracy of 97.88%. These exceptional outcomes highlight the system's ability to classify different VF illnesses precisely. In addition, we utilized the UNet-BiGRU model for segmentation, which attained a training accuracy of 92.55%, a validation accuracy of 89.87%, and a significant test accuracy of 91.47%. In the segmentation task, we examined some methods to improve our ability to divide data into segments, resulting in a testing accuracy score of 91.99% and an Intersection over Union (IOU) of 87.46%. These measures demonstrate skill of the model in accurately defining and separating VF. Our system's classification and segmentation results confirm its capacity to effectively identify and segment VF disorders, representing a significant advancement in enhancing diagnostic accuracy and healthcare in this specialized field. This study emphasizes the potential of machine learning to transform the medical field's capacity to categorize VF and segment VF, providing clinicians with a vital instrument to mitigate the profound impact of the condition. Implementing this innovative approach is expected to enhance medical procedures and provide a sense of optimism to those globally affected by VF disease.

摘要

在医疗保健领域,至关重要的任务是理解和分类影响声带(VF)的疾病。准确识别 VF 疾病是该领域的关键问题。将 VF 分割和疾病分类集成到单个系统中是具有挑战性的,但对于精确诊断很重要。我们的研究通过将 VF 疾病分类和 VF 分割结合到单个集成系统中解决了这一挑战。我们使用了两种有效的集成机器学习方法:集成的 EfficientNetV2L-LGBM 和集成的 UNet-BiGRU。我们使用 EfficientNetV2L-LGBM 模型进行分类,训练精度为 98.88%,验证精度为 97.73%,测试精度为 97.88%。这些出色的结果突显了该系统能够精确分类不同 VF 疾病的能力。此外,我们还使用 UNet-BiGRU 模型进行分割,训练精度为 92.55%,验证精度为 89.87%,测试精度为 91.47%。在分割任务中,我们研究了一些方法来提高我们将数据分割成段的能力,从而使测试精度达到 91.99%,交并比(IOU)达到 87.46%。这些措施证明了模型在准确定义和分离 VF 方面的能力。我们系统的分类和分割结果证实了它有效识别和分割 VF 障碍的能力,这代表了在提高该专业领域诊断准确性和医疗保健水平方面的重大进展。本研究强调了机器学习在分类和分割 VF 方面的潜力,为临床医生提供了一种重要的工具,以减轻 VF 疾病的深远影响。预计实施这种创新方法将改善医疗程序,并为全球受 VF 疾病影响的人带来乐观情绪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/325b/11758383/9827ad7e60b8/41598_2024_64987_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验