Suppr超能文献

基于神经网络的求解器,用于求解由赫尔弗里希模型预测的囊泡形状。

Neural-network-based solver for vesicle shapes predicted by the Helfrich model.

作者信息

Rohanizadegan Yousef, Li Hong, Chen Jeff Z Y

机构信息

Department of Physics and Astronomy, University of Waterloo, Ontario, N2L3G1, Canada.

Department of Computer Science, Wenzhou University, Wenzhou 325035, China.

出版信息

Soft Matter. 2024 Jul 10;20(27):5359-5366. doi: 10.1039/d4sm00482e.

Abstract

That a three-dimensional vesicle morphology can be modeled by an artificial neural network is proposed and demonstrated. In the phase-field representation, the Helfrich bending energy of a membrane is equivalently cast into field-based energy, which enables a more direct representation of a deformable, three-dimensional membrane surface. The core of our method is incorporating recent machine-learning techniques to perform the required energy minimization. The versatile ability of the method, to compute axisymmetric and nonsymmetric shapes, is discussed.

摘要

本文提出并证明了人工神经网络可以对三维囊泡形态进行建模。在相场表示中,膜的赫尔弗里希弯曲能被等效地转换为基于场的能量,这使得能够更直接地表示可变形的三维膜表面。我们方法的核心是结合最新的机器学习技术来执行所需的能量最小化。讨论了该方法计算轴对称和非轴对称形状的通用能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验