Liao Ke, Ding Lexin, Schilling Christian
Faculty of Physics, Arnold Sommerfeld Centre for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstr. 37, 80333 München, Germany.
Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany.
J Phys Chem Lett. 2024 Jul 4;15(26):6782-6790. doi: 10.1021/acs.jpclett.4c01105. Epub 2024 Jun 24.
The simultaneous treatment of static and dynamic correlations in strongly correlated electron systems is a critical challenge. In particular, finding a universal scheme for identifying a single-particle orbital basis that minimizes the representational complexity of the many-body wave function is a formidable and longstanding problem. As a contribution toward its solution, we show that the total orbital correlation actually reveals and quantifies the intrinsic complexity of the wave function, once it is minimized via orbital rotations. To demonstrate the power of this concept in practice, an iterative scheme is proposed to optimize the orbitals by minimizing the total orbital correlation calculated by the tailored coupled cluster singles and doubles (TCCSD) ansatz. The optimized orbitals enable the limited TCCSD ansatz to capture more nontrivial information on the many-body wave function, indicated by the improved wave function and energy. An initial application of this scheme shows great improvement of TCCSD in predicting the singlet ground state potential energy curves of the strongly correlated C and Cr molecule.
在强关联电子系统中同时处理静态和动态关联是一项关键挑战。特别是,找到一种通用方案来确定单粒子轨道基,以使多体波函数的表示复杂度最小化,这是一个艰巨且长期存在的问题。作为对解决该问题的一项贡献,我们表明,一旦通过轨道旋转将总轨道关联最小化,它实际上就能揭示并量化波函数的内在复杂度。为了在实际中展示这一概念的威力,我们提出了一种迭代方案,通过最小化由定制耦合簇单双激发(TCCSD)近似计算出的总轨道关联来优化轨道。优化后的轨道使有限的TCCSD近似能够捕获更多关于多体波函数的重要信息,这由改进后的波函数和能量得以体现。该方案的初步应用表明,TCCSD在预测强关联的C和Cr分子的单重态基态势能曲线方面有很大改进。