Suppr超能文献

术中血流动力学监测数据预测手术中大量输血

Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data.

机构信息

Interdisciplinary Program of Medical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea.

Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea.

出版信息

J Biomed Inform. 2024 Aug;156:104680. doi: 10.1016/j.jbi.2024.104680. Epub 2024 Jun 22.

Abstract

OBJECTIVE

Failure to receive prompt blood transfusion leads to severe complications if massive bleeding occurs during surgery. For the timely preparation of blood products, predicting the possibility of massive transfusion (MT) is essential to decrease morbidity and mortality. This study aimed to develop a model for predicting MT 10 min in advance using non-invasive bio-signal waveforms that change in real-time.

METHODS

In this retrospective study, we developed a deep learning-based algorithm (DLA) to predict intraoperative MT within 10 min. MT was defined as the transfusion of 3 or more units of red blood cells within an hour. The datasets consisted of 18,135 patients who underwent surgery at Seoul National University Hospital (SNUH) for model development and internal validation and 621 patients who underwent surgery at the Boramae Medical Center (BMC) for external validation. We constructed the DLA by using features extracted from plethysmography (collected at 500 Hz) and hematocrit measured during surgery.

RESULTS

Among 18,135 patients in SNUH and 621 patients in BMC, 265 patients (1.46%) and 14 patients (2.25%) received MT during surgery, respectively. The area under the receiver operating characteristic curve (AUROC) of DLA predicting intraoperative MT before 10 min was 0.962 (95% confidence interval [CI], 0.948-0.974) in internal validation and 0.922 (95% CI, 0.882-0.959) in external validation, respectively.

CONCLUSION

The DLA can successfully predict intraoperative MT using non-invasive bio-signal waveforms.

摘要

目的

如果手术中发生大量出血而未能及时输血,可能会导致严重并发症。为了及时准备血制品,预测大量输血(MT)的可能性对于降低发病率和死亡率至关重要。本研究旨在开发一种使用实时变化的非侵入性生物信号波形提前 10 分钟预测 MT 的模型。

方法

在这项回顾性研究中,我们开发了一种基于深度学习的算法(DLA)来预测 10 分钟内的术中 MT。MT 定义为在 1 小时内输注 3 个或更多单位的红细胞。数据集包括在首尔国立大学医院(SNUH)接受手术的 18135 名患者,用于模型开发和内部验证,以及在波拉美医疗中心(BMC)接受手术的 621 名患者,用于外部验证。我们使用从容积描记法(以 500 Hz 采集)中提取的特征和手术期间测量的血细胞比容构建 DLA。

结果

在 SNUH 的 18135 名患者和 BMC 的 621 名患者中,分别有 265 名(1.46%)和 14 名(2.25%)患者在手术中接受了 MT。DLA 预测内部验证中 10 分钟内术中 MT 的接收者操作特征曲线(AUROC)分别为 0.962(95%置信区间 [CI],0.948-0.974)和外部验证中的 0.922(95% CI,0.882-0.959)。

结论

DLA 可以使用非侵入性生物信号波形成功预测术中 MT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验