Department of Preventive Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea; Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
Department of Anaesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
Br J Anaesth. 2021 Apr;126(4):808-817. doi: 10.1016/j.bja.2020.12.035. Epub 2021 Feb 6.
Intraoperative hypotension is associated with a risk of postoperative organ dysfunction. In this study, we aimed to present deep learning algorithms for real-time predictions 5, 10, and 15 min before a hypotensive event.
In this retrospective observational study, deep learning algorithms were developed and validated using biosignal waveforms acquired from patient monitoring of noncardiac surgery. The classification model was a binary classifier of a hypotensive event (MAP <65 mm Hg) or a non-hypotensive event by analysing biosignal waveforms. The regression model was developed to directly estimate the MAP. The primary outcome was area under the receiver operating characteristic (AUROC) curve and the mean absolute error (MAE).
In total, 3301 patients were included. For invasive models, the multichannel model with an arterial pressure waveform, electrocardiography, photoplethysmography, and capnography showed greater AUROC than the arterial-pressure-only models (AUROC, 0.897 [95% confidence interval {CI}: 0.894-0.900] vs 0.891 [95% CI: 0.888-0.894]) and lesser MAE (MAE, 7.76 mm Hg [95% CI: 7.64-7.87 mm Hg] vs 8.12 mm Hg [95% CI: 8.02-8.21 mm Hg]). For the noninvasive models, the multichannel model showed greater AUROCs than that of the photoplethysmography-only models (AUROC, 0.762 [95% CI: 0.756-0.767] vs 0.694 [95% CI: 0.686-0.702]) and lesser MAEs (MAE, 11.68 mm Hg [95% CI: 11.57-11.80 mm Hg] vs 12.67 [95% CI: 12.56-12.79 mm Hg]).
Deep learning models can predict hypotensive events based on biosignals acquired using invasive and noninvasive patient monitoring. In addition, the model shows better performance when using combined rather than single signals.
术中低血压与术后器官功能障碍的风险相关。在这项研究中,我们旨在提出深度学习算法,以便在低血压事件发生前 5、10 和 15 分钟实时预测。
在这项回顾性观察研究中,使用非心脏手术患者监测获得的生物信号波形开发和验证了深度学习算法。分类模型是通过分析生物信号波形对低血压事件(MAP<65mmHg)或非低血压事件的二分类器。回归模型是为了直接估计 MAP 而开发的。主要结果是接收者操作特征(ROC)曲线下面积(AUROC)和平均绝对误差(MAE)。
共纳入 3301 例患者。对于有创模型,具有动脉压力波形、心电图、光电容积脉搏波和二氧化碳图的多通道模型比仅动脉压模型具有更高的 AUROC(AUROC,0.897[95%置信区间{CI}:0.894-0.900]比 0.891[95%CI:0.888-0.894])和更小的 MAE(MAE,7.76mmHg[95%CI:7.64-7.87mmHg]比 8.12mmHg[95%CI:8.02-8.21mmHg])。对于无创模型,多通道模型的 AUROC 大于光电容积脉搏波模型(AUROC,0.762[95%CI:0.756-0.767]比 0.694[95%CI:0.686-0.702])和更小的 MAE(MAE,11.68mmHg[95%CI:11.57-11.80mmHg]比 12.67[95%CI:12.56-12.79mmHg])。
深度学习模型可以根据使用有创和无创患者监测获得的生物信号预测低血压事件。此外,当使用组合而不是单一信号时,模型表现更好。