Suppr超能文献

对多发性硬化症患者关于其疾病病因的理论进行自然语言处理分析。

Natural language processing analysis of the theories of people with multiple sclerosis about causes of their disease.

作者信息

Haag Christina, Steinemann Nina, Ajdacic-Gross Vladeta, Schlomberg Jonas Tom Thaddäus, Ineichen Benjamin Victor, Stanikić Mina, Dressel Holger, Daniore Paola, Roth Patrick, Ammann Sabin, Calabrese Pasquale, Kamm Christian Philipp, Kesselring Jürg, Kuhle Jens, Zecca Chiara, Puhan Milo Alan, von Wyl Viktor

机构信息

Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.

Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland.

出版信息

Commun Med (Lond). 2024 Jun 24;4(1):122. doi: 10.1038/s43856-024-00546-3.

Abstract

BACKGROUND

While potential risk factors for multiple sclerosis (MS) have been extensively researched, it remains unclear how persons with MS theorize about their MS. Such theories may affect mental health and treatment adherence. Using natural language processing techniques, we investigated large-scale text data about theories that persons with MS have about the causes of their disease. We examined the topics into which their theories could be grouped and the prevalence of each theory topic.

METHODS

A total of 486 participants of the Swiss MS Registry longitudinal citizen science project provided text data on their theories about the etiology of MS. We used the transformer-based BERTopic Python library for topic modeling to identify underlying topics. We then conducted an in-depth characterization of the topics and assessed their prevalence.

RESULTS

The topic modeling analysis identifies 19 distinct topics that participants theorize as causal for their MS. The topics most frequently cited are Mental Distress (31.5%), Stress (Exhaustion, Work) (29.8%), Heredity/Familial Aggregation (27.4%), and Diet, Obesity (16.0%). The 19 theory topics can be grouped into four high-level categories: physical health (mentioned by 56.2% of all participants), mental health (mentioned by 53.7%), risk factors established in the scientific literature (genetics, Epstein-Barr virus, smoking, vitamin D deficiency/low sunlight exposure; mentioned by 47.7%), and fate/coincidence (mentioned by 3.1%). Our study highlights the importance of mental health issues for theories participants have about the causes of their MS.

CONCLUSIONS

Our findings emphasize the importance of communication between healthcare professionals and persons with MS about the pathogenesis of MS, the scientific evidence base and mental health.

摘要

背景

虽然对多发性硬化症(MS)的潜在风险因素已进行了广泛研究,但MS患者如何阐述自己的病情仍不清楚。此类阐述可能会影响心理健康和治疗依从性。我们使用自然语言处理技术,研究了大量关于MS患者对其疾病病因的阐述的文本数据。我们考察了这些阐述可归为的主题以及各主题的流行程度。

方法

瑞士MS注册纵向公民科学项目的486名参与者提供了关于MS病因的阐述的文本数据。我们使用基于Transformer的BERTopic Python库进行主题建模,以识别潜在主题。然后,我们对这些主题进行了深入描述并评估了它们的流行程度。

结果

主题建模分析识别出19个不同的主题,参与者认为这些主题是其患MS的病因。最常被提及的主题是精神困扰(31.5%)、压力(疲惫、工作)(29.8%)、遗传/家族聚集(27.4%)以及饮食、肥胖(16.0%)。这19个理论主题可分为四个高级类别:身体健康(所有参与者中有56.2%提及)、心理健康(53.7%提及)、科学文献中确定的风险因素(遗传学、爱泼斯坦 - 巴尔病毒、吸烟、维生素D缺乏/阳光照射不足;47.7%提及)以及命运/巧合(3.1%提及)。我们的研究突出了心理健康问题在参与者对其MS病因的阐述中的重要性。

结论

我们的研究结果强调了医疗保健专业人员与MS患者之间就MS发病机制、科学证据基础和心理健康进行沟通的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b520/11196672/8af9611cb60e/43856_2024_546_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验