Haag Christina, Steinemann Nina, Chiavi Deborah, Kamm Christian P, Sieber Chloé, Manjaly Zina-Mary, Horváth Gábor, Ajdacic-Gross Vladeta, Puhan Milo Alan, von Wyl Viktor
Institute for Implementation Science in Health Care, University of Zurich, Switzerland.
Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland.
PLOS Digit Health. 2023 Aug 2;2(8):e0000305. doi: 10.1371/journal.pdig.0000305. eCollection 2023 Aug.
The emergence of new digital technologies has enabled a new way of doing research, including active collaboration with the public ('citizen science'). Innovation in machine learning (ML) and natural language processing (NLP) has made automatic analysis of large-scale text data accessible to study individual perspectives in a convenient and efficient fashion. Here we blend citizen science with innovation in NLP and ML to examine (1) which categories of life events persons with multiple sclerosis (MS) perceived as central for their MS; and (2) associated emotions. We subsequently relate our results to standardized individual-level measures. Participants (n = 1039) took part in the 'My Life with MS' study of the Swiss MS Registry which involved telling their story through self-selected life events using text descriptions and a semi-structured questionnaire. We performed topic modeling ('latent Dirichlet allocation') to identify high-level topics underlying the text descriptions. Using a pre-trained language model, we performed a fine-grained emotion analysis of the text descriptions. A topic modeling analysis of totally 4293 descriptions revealed eight underlying topics. Five topics are common in clinical research: 'diagnosis', 'medication/treatment', 'relapse/child', 'rehabilitation/wheelchair', and 'injection/symptoms'. However, three topics, 'work', 'birth/health', and 'partnership/MS' represent domains that are of great relevance for participants but are generally understudied in MS research. While emotions were predominantly negative (sadness, anxiety), emotions linked to the topics 'birth/health' and 'partnership/MS' was also positive (joy). Designed in close collaboration with persons with MS, the 'My Life with MS' project explores the experience of living with the chronic disease of MS using NLP and ML. Our study thus contributes to the body of research demonstrating the potential of integrating citizen science with ML-driven NLP methods to explore the experience of living with a chronic condition.
新数字技术的出现带来了一种新的研究方式,包括与公众进行积极合作(“公民科学”)。机器学习(ML)和自然语言处理(NLP)的创新使得以方便高效的方式自动分析大规模文本数据以研究个体观点成为可能。在这里,我们将公民科学与NLP和ML的创新相结合,以研究:(1)多发性硬化症(MS)患者认为哪些生活事件类别对他们的MS至关重要;(2)相关情绪。随后,我们将研究结果与标准化的个体水平测量指标相关联。参与者(n = 1039)参与了瑞士MS登记处的“我的MS生活”研究,该研究要求他们通过使用文本描述和半结构化问卷,从自我选择的生活事件中讲述自己的故事。我们进行了主题建模(“潜在狄利克雷分配”)以识别文本描述背后的高层次主题。使用预训练的语言模型,我们对文本描述进行了细粒度的情感分析。对总共4293条描述的主题建模分析揭示了八个潜在主题。五个主题在临床研究中很常见:“诊断”、“药物/治疗”、“复发/子女”、“康复/轮椅”和“注射/症状”。然而,“工作”、“出生/健康”和“伴侣关系/MS”这三个主题代表了对参与者非常重要但在MS研究中普遍未得到充分研究的领域。虽然情绪主要是负面的(悲伤、焦虑),但与“出生/健康”和“伴侣关系/MS”主题相关的情绪也是积极的(喜悦)。“我的MS生活”项目与MS患者密切合作设计,利用NLP和ML探索患有MS这种慢性病的生活体验。因此,我们的研究为一系列研究做出了贡献,证明了将公民科学与ML驱动的NLP方法相结合以探索慢性病生活体验的潜力。