Pandey Anil K, Ganguly Himal K, Sinha Sudipta Kumar, Daniels Kelly E, Yap Glenn P A, Patel Sandeep, Zondlo Neal J
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar 140001, India.
ACS Chem Biol. 2023 Sep 15;18(9):1938-1958. doi: 10.1021/acschembio.3c00068. Epub 2023 Aug 18.
Phosphorylation and dephosphorylation of proteins by kinases and phosphatases are central to cellular responses and function. The structural effects of serine and threonine phosphorylation were examined in peptides and in proteins, by circular dichroism, NMR spectroscopy, bioinformatics analysis of the PDB, small-molecule X-ray crystallography, and computational investigations. Phosphorylation of both serine and threonine residues induces substantial conformational restriction in their physiologically more important dianionic forms. Threonine exhibits a particularly strong disorder-to-order transition upon phosphorylation, with dianionic phosphothreonine preferentially adopting a cyclic conformation with restricted ϕ (ϕ ∼ -60°) stabilized by three noncovalent interactions: a strong intraresidue phosphate-amide hydrogen bond, an n → π* interaction between consecutive carbonyls, and an n → σ* interaction between the phosphate Oγ lone pair and the antibonding orbital of C-Hβ that restricts the χ side-chain conformation. Proline is unique among the canonical amino acids for its covalent cyclization on the backbone. Phosphothreonine can mimic proline's backbone cyclization via noncovalent interactions. The preferred torsions of dianionic phosphothreonine are ϕ,ψ = polyproline II helix > α-helix (ϕ ∼ -60°); χ = ; χ ∼ +115° (eclipsed C-H/O-P bonds). This structural signature is observed in diverse proteins, including in the activation loops of protein kinases and in protein-protein interactions. In total, these results suggest a structural basis for the differential use and evolution of threonine versus serine phosphorylation sites in proteins, with serine phosphorylation typically inducing smaller, rheostat-like changes, versus threonine phosphorylation promoting larger, step function-like switches, in proteins.
激酶和磷酸酶对蛋白质的磷酸化和去磷酸化作用是细胞反应和功能的核心。通过圆二色性、核磁共振光谱、蛋白质数据库(PDB)的生物信息学分析、小分子X射线晶体学以及计算研究,对肽和蛋白质中丝氨酸和苏氨酸磷酸化的结构效应进行了研究。丝氨酸和苏氨酸残基的磷酸化在其生理上更重要的双阴离子形式中会引起显著的构象限制。苏氨酸在磷酸化时表现出特别强烈的从无序到有序的转变,双阴离子磷酸苏氨酸优先采用一种环状构象,其φ角受限(φ ∼ -60°),通过三种非共价相互作用得以稳定:一种强的残基内磷酸 - 酰胺氢键、相邻羰基之间的n → π相互作用以及磷酸Oγ孤对与C - Hβ反键轨道之间的n → σ相互作用,该相互作用限制了χ侧链构象。脯氨酸在标准氨基酸中因其主链上的共价环化而独特。磷酸苏氨酸可以通过非共价相互作用模拟脯氨酸的主链环化。双阴离子磷酸苏氨酸的优选扭转角为φ,ψ = 多聚脯氨酸II螺旋 > α螺旋(φ ∼ -60°);χ = ;χ ∼ +115°(C - H/O - P键重叠)。这种结构特征在多种蛋白质中都有观察到,包括蛋白激酶的激活环以及蛋白质 - 蛋白质相互作用中。总体而言,这些结果表明了蛋白质中苏氨酸与丝氨酸磷酸化位点差异使用和进化的结构基础,即丝氨酸磷酸化通常在蛋白质中诱导较小的、类似变阻器的变化,而苏氨酸磷酸化则促进较大的、类似阶跃函数的转变。