Suppr超能文献

GSK3驱动的心肌中ABLIM1与肌联蛋白相互作用调节的分子机制

Molecular mechanisms of GSK3 -driven modulation of ABLIM1 and titin interactions in cardiac muscle.

作者信息

Sun Bin, Loftus Alec, Beh Goh Beh Brandon, Hepburn Aalaythia, Kirk Jonathan A, Kekenes-Huskey Peter M

出版信息

bioRxiv. 2025 May 28:2024.12.07.627363. doi: 10.1101/2024.12.07.627363.

Abstract

1 The heart adapts to cardiac demand through various mechanisms, including chemical modifications of myofilament proteins responsible for cell contraction. Many of these modifications, such as phosphorylation, occur in unstructured, or intrinsically disordered, regions (IDRs) of proteins. Although often challenging to study, these IDRs are increasingly recognized as dynamic, tunable regulators of protein function. Given that cardiac dysfunction can involve changes in the post-translational modification (PTM) status of myofilament proteins, it is critical to assess how alterations within these disordered regions impact intact protein and myofilament behavior. We hypothesized that the function of ABLIM1, a myofilament protein containing an important IDR, is regulated by altering its IDR conformational ensemble through PTMs, primarily phosphorylation. We proposed that this conformational change would modulate its ability to bind to other myofilament proteins. To evaluate this hypothesis, we employed a multiscale modeling approach including molecular dynamics simulations. This was used to predict the conformational ensembles of ABLIM1 before and after phosphorylation, at sites known to be altered in a canine model of heart failure with reduced GSK3 activity. We then used a state-based model of contraction to rationalize the physiological consequences of the molecular-scale predictions. Based on our data, we observed that local physicochemical alterations induced by phosphorylation in ABLIM1's intrinsically disordered regions significantly affect its overall conformational ensemble properties. This ensemble change subsequently influences the ability of its LIM domains to interact with titin. Furthermore, using the contraction model, we show that a reduced ability to recruit myosin heads for cross-bridge formation, resulting from the modified LIM domain/titin interactions, provides a mechanism that elucidates previous findings of diminished length-dependent activation. These findings offer crucial molecular insights, reframing IDRs not merely as structural noise but as key, tunable elements that control protein interactions and ultimately impact mechanical behavior in the sarcomere. This work bridges molecular disorder and biomechanical function, providing a new lens to understand dynamic control and dysfunction in cardiomyocyte contraction.

摘要
  1. 心脏通过多种机制适应心脏需求,包括对负责细胞收缩的肌丝蛋白进行化学修饰。这些修饰中的许多,如磷酸化,发生在蛋白质的无结构或内在无序区域(IDR)。尽管这些IDR的研究通常具有挑战性,但它们越来越被认为是蛋白质功能的动态、可调节调节剂。鉴于心脏功能障碍可能涉及肌丝蛋白翻译后修饰(PTM)状态的变化,评估这些无序区域内的改变如何影响完整蛋白质和肌丝行为至关重要。我们假设,ABLIM1(一种含有重要IDR的肌丝蛋白)的功能通过PTM(主要是磷酸化)改变其IDR构象集合来调节。我们提出,这种构象变化将调节其与其他肌丝蛋白结合的能力。为了评估这一假设,我们采用了包括分子动力学模拟在内的多尺度建模方法。这被用于预测在GSK3活性降低的犬类心力衰竭模型中已知会发生改变的位点上,ABLIM1磷酸化前后的构象集合。然后,我们使用基于状态的收缩模型来合理化分子尺度预测的生理后果。基于我们的数据,我们观察到ABLIM1内在无序区域的磷酸化诱导的局部物理化学改变显著影响其整体构象集合特性。这种集合变化随后影响其LIM结构域与肌联蛋白相互作用的能力。此外,使用收缩模型,我们表明,由于修饰的LIM结构域/肌联蛋白相互作用导致招募肌球蛋白头部进行横桥形成的能力降低,提供了一种机制,阐明了先前关于长度依赖性激活减弱的发现。这些发现提供了关键的分子见解,将IDR不仅仅重新定义为结构噪声,而是作为控制蛋白质相互作用并最终影响肌节机械行为的关键、可调节元件。这项工作架起了分子无序与生物力学功能之间的桥梁,为理解心肌细胞收缩中的动态控制和功能障碍提供了一个新的视角。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验