文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

膳食纤维通过肠道微生物群的代谢相互作用来指导微生物色氨酸代谢。

Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota.

机构信息

National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.

Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.

出版信息

Nat Microbiol. 2024 Aug;9(8):1964-1978. doi: 10.1038/s41564-024-01737-3. Epub 2024 Jun 25.


DOI:10.1038/s41564-024-01737-3
PMID:38918470
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11306097/
Abstract

Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.

摘要

色氨酸被肠道微生物分解,产生广泛的代谢物,这些代谢物与宿主的有益和不良影响都有关联。目前尚不清楚肠道微生物色氨酸代谢是如何朝着与慢性肾病相关的吲哚方向,还是朝着具有保护作用的吲哚乳酸(ILA)和吲哚丙酸(IPA)方向发展。在这里,我们使用体外培养和动物实验,在受控的三物种定义群落和复杂的未定义人类粪便群落中评估肠道微生物对色氨酸的竞争及其产生的代谢物。特定色氨酸衍生代谢物的产生不是主要由色氨酸代谢细菌的丰度决定,而是由特定代谢途径的底物依赖性调节决定。在体外和体内的三物种群落中,产生吲哚的大肠杆菌和产生 ILA 和 IPA 的梭状芽胞杆菌竞争色氨酸。重要的是,纤维降解菌拟杆菌通过将单糖交叉喂养给大肠杆菌,影响了这种竞争。这通过代谢物阻遏抑制了吲哚的产生,从而使更多的色氨酸可用于 C. sporogenes,导致 ILA 和 IPA 的产量增加。使用人类粪便培养物和粪便微生物移植的无菌小鼠证实了纤维依赖性吲哚减少。我们的研究结果解释了为什么食用可发酵纤维会抑制吲哚的产生,但会促进与健康益处相关的其他色氨酸代谢物的生成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/4bceedcca6d7/41564_2024_1737_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/bf9accfc593b/41564_2024_1737_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/ea63cc04157f/41564_2024_1737_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/dafe501ce9a3/41564_2024_1737_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/eb1aea8d2830/41564_2024_1737_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/1179342ee72b/41564_2024_1737_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/e9c6e9b6be97/41564_2024_1737_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/3e832d7c5afe/41564_2024_1737_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/2d01d44dc882/41564_2024_1737_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/af01f5dca3ba/41564_2024_1737_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/303364893c1e/41564_2024_1737_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/37600a797415/41564_2024_1737_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/2c455711ce3e/41564_2024_1737_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/ad69c709df45/41564_2024_1737_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/4bceedcca6d7/41564_2024_1737_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/bf9accfc593b/41564_2024_1737_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/ea63cc04157f/41564_2024_1737_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/dafe501ce9a3/41564_2024_1737_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/eb1aea8d2830/41564_2024_1737_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/1179342ee72b/41564_2024_1737_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/e9c6e9b6be97/41564_2024_1737_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/3e832d7c5afe/41564_2024_1737_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/2d01d44dc882/41564_2024_1737_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/af01f5dca3ba/41564_2024_1737_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/303364893c1e/41564_2024_1737_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/37600a797415/41564_2024_1737_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/2c455711ce3e/41564_2024_1737_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/ad69c709df45/41564_2024_1737_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/11306097/4bceedcca6d7/41564_2024_1737_Fig14_ESM.jpg

相似文献

[1]
Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota.

Nat Microbiol. 2024-8

[2]
Interplay between gut microbiota and tryptophan metabolism in type 2 diabetic mice treated with metformin.

Microbiol Spectr. 2024-10-3

[3]
Microbiota-derived indoles alleviate intestinal inflammation and modulate microbiome by microbial cross-feeding.

Microbiome. 2024-3-19

[4]
Indole-3-Propionic Acid, a Functional Metabolite of , Promotes Muscle Tissue Development and Reduces Muscle Cell Inflammation.

Int J Mol Sci. 2021-11-18

[5]
Synbiotic therapy with and xylan promotes gut-derived indole-3-propionic acid and improves cognitive impairments in an Alzheimer's disease mouse model.

Food Funct. 2024-7-29

[6]
Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease.

Mol Cell Biochem. 2024-9

[7]
The role of microbial indole metabolites in tumor.

Gut Microbes. 2024

[8]
Paeoniflorin modulates gut microbial production of indole-3-lactate and epithelial autophagy to alleviate colitis in mice.

Phytomedicine. 2020-9-19

[9]
Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis.

Cells. 2022-7-25

[10]
The gut microbiota metabolite indole increases emotional responses and adrenal medulla activity in chronically stressed male mice.

Psychoneuroendocrinology. 2020-9

引用本文的文献

[1]
The Impact of Low-Lactose, High Galacto-Oligosaccharides Milk on Gut Microbiome and Plasma Metabolome in Healthy Adults: A Randomized, Double-Blind, Controlled Clinical Trial Complemented by Ex Vivo Experiments.

Curr Dev Nutr. 2025-7-24

[2]
Hormonal Contraceptives and the Gut Microbiome in Female Athletes: Implications for Health, Performance, and Exercise-Related Physiological Adjustments.

Cureus. 2025-7-26

[3]
Respiratory diseases and the gut microbiota: an updated review.

Front Cell Infect Microbiol. 2025-8-11

[4]
Citrus Pectin Supplementation Alleviated Hepatic Lipid Accumulation through Gut Microbiota Indole Lactic Acid Promoting Hepatic Bile Acid Synthesis and Excretion.

Int J Biol Sci. 2025-7-28

[5]
Effects of single and co-cultured lactic acid bacteria on antioxidant capacity and metabolite profiles during rambutan juice fermentation.

Food Chem X. 2025-8-8

[6]
Dietary Fiber as Prebiotics: A Mitigation Strategy for Metabolic Diseases.

Foods. 2025-7-29

[7]
Exploring the relationship between co-abundance of gut microbiota and novel metabolic pathways in different subtypes of irritable bowel syndrome: insights from the American Gut Project.

Front Med (Lausanne). 2025-7-22

[8]
Effect of Peanut Shell Extract and Luteolin on Gut Microbiota and High-Fat Diet-Induced Sequelae of the Inflammatory Continuum in a Metabolic Syndrome-like Murine Model.

Nutrients. 2025-7-10

[9]
Multi-Omics Integration Reveals the Impact of Gastrointestinal Microbiota on Feed Efficiency in Tan Sheep.

Microorganisms. 2025-7-8

[10]
Role of Gut Microbiota and Metabolite Remodeling on the Development and Management of Rheumatoid Arthritis: A Narrative Review.

Vet Sci. 2025-7-5

本文引用的文献

[1]
Microbiota-derived 3-IAA influences chemotherapy efficacy in pancreatic cancer.

Nature. 2023-3

[2]
Distinct effects of fiber and colon segment on microbiota-derived indoles and short-chain fatty acids.

Food Chem. 2023-1-1

[3]
Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease.

Circ Res. 2022-8-19

[4]
The gut metabolite indole-3 propionate promotes nerve regeneration and repair.

Nature. 2022-7

[5]
Impact of a 7-day homogeneous diet on interpersonal variation in human gut microbiomes and metabolomes.

Cell Host Microbe. 2022-6-8

[6]
Noninvasive assessment of gut function using transcriptional recording sentinel cells.

Science. 2022-5-13

[7]
Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites.

Nat Microbiol. 2022-5

[8]
New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases.

Front Pharmacol. 2021-12-13

[9]
Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut.

Nat Microbiol. 2021-11

[10]
The Role of Dietary Fiber Supplementation in Regulating Uremic Toxins in Patients With Chronic Kidney Disease: A Meta-Analysis of Randomized Controlled Trials.

J Ren Nutr. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索