Romero-Sorozábal Pablo, Delgado-Oleas Gabriel, Laudanski Annemarie F, Gutiérrez Álvaro, Rocon Eduardo
BioRobotics, Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Madrid (CSIC-UPM), 28500 Madrid, Spain.
Ingeniería Electrónica, Universidad del Azuay, Cuenca 010107, Ecuador.
Biomimetics (Basel). 2024 Jun 12;9(6):352. doi: 10.3390/biomimetics9060352.
Enhancing human-robot interaction has been a primary focus in robotic gait assistance, with a thorough understanding of human motion being crucial for personalizing gait assistance. Traditional gait trajectory references from Clinical Gait Analysis (CGA) face limitations due to their inability to account for individual variability. Recent advancements in gait pattern generators, integrating regression models and Artificial Neural Network (ANN) techniques, have aimed at providing more personalized and dynamically adaptable solutions. This article introduces a novel approach that expands regression and ANN applications beyond mere angular estimations to include three-dimensional spatial predictions. Unlike previous methods, our approach provides comprehensive spatial trajectories for hip, knee and ankle tailored to individual kinematics, significantly enhancing end-effector rehabilitation robotic devices. Our models achieve state-of-the-art accuracy: overall RMSE of 13.40 mm and a correlation coefficient of 0.92 for the regression model, and RMSE of 12.57 mm and a correlation of 0.99 for the Long Short-Term Memory (LSTM) model. These advancements underscore the potential of these models to offer more personalized gait trajectory assistance, improving human-robot interactions.
增强人机交互一直是机器人步态辅助的主要关注点,深入了解人体运动对于个性化步态辅助至关重要。临床步态分析(CGA)中的传统步态轨迹参考由于无法考虑个体差异而存在局限性。步态模式生成器的最新进展,融合了回归模型和人工神经网络(ANN)技术,旨在提供更个性化和动态适应性更强的解决方案。本文介绍了一种新颖的方法,该方法将回归和ANN应用从单纯的角度估计扩展到包括三维空间预测。与以前的方法不同,我们的方法为髋、膝和踝关节提供了针对个体运动学量身定制的全面空间轨迹,显著增强了末端执行器康复机器人设备。我们的模型达到了当前的先进精度:回归模型的总体均方根误差(RMSE)为13.40毫米,相关系数为0.92;长短期记忆(LSTM)模型的RMSE为12.57毫米,相关性为0.99。这些进展突出了这些模型提供更个性化步态轨迹辅助、改善人机交互的潜力。