Suppr超能文献

基于 LSTM 网络的步态轨迹和步态相位预测。

Gait Trajectory and Gait Phase Prediction Based on an LSTM Network.

机构信息

KTH MoveAbility Lab, Department of Engineering Mechanics, Royal Institute of Technology, 10044 Stockholm, Sweden.

KTH BioMEx Center, Royal Institute of Technology, 10044 Stockholm, Sweden.

出版信息

Sensors (Basel). 2020 Dec 12;20(24):7127. doi: 10.3390/s20247127.

Abstract

Lower body segment trajectory and gait phase prediction is crucial for the control of assistance-as-needed robotic devices, such as exoskeletons. In order for a powered exoskeleton with phase-based control to determine and provide proper assistance to the wearer during gait, we propose an approach to predict segment trajectories up to 200 ms ahead (angular velocity of the thigh, shank and foot segments) and five gait phases (loading response, mid-stance, terminal stance, preswing and swing), based on collected data from inertial measurement units placed on the thighs, shanks, and feet. The approach we propose is a long-short term memory (LSTM)-based network, a modified version of recurrent neural networks, which can learn order dependence in sequence prediction problems. The algorithm proposed has a weighted discount loss function that places more weight in predicting the next three to five time frames but also contributes to an overall prediction performance for up to 10 time frames. The LSTM model was designed to learn lower limb segment trajectories using training samples and was tested for generalization across participants. All predicted trajectories were strongly correlated with the measured trajectories, with correlation coefficients greater than 0.98. The proposed LSTM approach can also accurately predict the five gait phases, particularly swing phase with 95% accuracy in inter-subject implementation. The ability of the LSTM network to predict future gait trajectories and gait phases can be applied in designing exoskeleton controllers that can better compensate for system delays to smooth the transition between gait phases.

摘要

下肢段轨迹和步态阶段预测对于按需辅助机器人设备(如外骨骼)的控制至关重要。为了使基于相位控制的动力外骨骼能够在步态期间确定并为佩戴者提供适当的辅助,我们提出了一种方法,可提前 200 毫秒预测(大腿、小腿和脚段的角速度)和五个步态阶段(负荷反应、中间站立、终末站立、预摆和摆动),这是基于放置在大腿、小腿和脚上的惯性测量单元收集的数据。我们提出的方法是基于长短期记忆(LSTM)的网络,是递归神经网络的一种改进版本,它可以学习序列预测问题中的顺序依赖性。所提出的算法具有加权折扣损失函数,该函数在预测下三个到五个时间帧时赋予更多权重,但也有助于在多达 10 个时间帧内进行整体预测性能。LSTM 模型旨在使用训练样本学习下肢段轨迹,并针对跨参与者的泛化进行测试。所有预测的轨迹与测量的轨迹高度相关,相关系数大于 0.98。所提出的 LSTM 方法还可以准确预测五个步态阶段,特别是在跨受试者实施中,摆动阶段的准确率为 95%。LSTM 网络预测未来步态轨迹和步态阶段的能力可应用于设计外骨骼控制器,以更好地补偿系统延迟,从而使步态阶段之间的过渡更加平稳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d078/7764336/f1ef85653232/sensors-20-07127-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验