Department of Architectural Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Environ Sci Technol. 2024 Jul 9;58(27):12051-12061. doi: 10.1021/acs.est.4c00575. Epub 2024 Jun 26.
Germicidal ultraviolet light (GUV) systems are designed to control airborne pathogen transmission in buildings. However, it is important to acknowledge that certain conditions and system configurations may lead GUV systems to produce air contaminants including oxidants and secondary organic aerosols (SOA). In this study, we modeled the formation and dispersion of oxidants and secondary contaminants generated by the operation of GUV systems employing ultraviolet C 254 and 222 nm. Using a three-dimensional computational fluid dynamics model, we examined the breathing zone concentrations of chemical species in an occupied classroom. Our findings indicate that operating GUV 222 leads to an approximate increase of 10 ppb in O concentration and 5.2 μg·m in SOA concentration compared to a condition without GUV operation, while GUV 254 increases the SOA concentration by about 1.2 μg·m, with a minimal impact on the O concentration. Furthermore, increasing the UV fluence rate of GUV 222 from 1 to 5 μW·cm results in up to 80% increase in the oxidants and SOA concentrations. For GUV 254, elevating the UV fluence rate from 30 to 50 μW·cm or doubling the radiating volume results in up to 50% increase in the SOA concentration. Note that indoor airflow patterns, particularly buoyancy-driven airflow (or displacement ventilation), lead to 15-45% lower SOA concentrations in the breathing zone compared to well-mixed airflow. The results also reveal that when the ventilation rate is below 2 h, operating GUV 254 has a smaller impact on human exposure to secondary contaminants than GUV 222. However, GUV 254 may generate more contaminants than GUV 222 when operating at high indoor O levels (>15 ppb). These results suggest that the design of GUV systems should consider indoor O levels and room ventilation conditions.
杀菌紫外线 (GUV) 系统旨在控制建筑物内空气中的病原体传播。然而,重要的是要认识到,某些条件和系统配置可能导致 GUV 系统产生空气污染物,包括氧化剂和二次有机气溶胶 (SOA)。在这项研究中,我们使用三维计算流体动力学模型模拟了在使用紫外线 C 254 和 222nm 的 GUV 系统运行时产生的氧化剂和二次污染物的形成和扩散。我们检查了有人占用的教室中呼吸区化学物质的浓度。我们的研究结果表明,与不运行 GUV 的情况相比,运行 GUV 222 会导致 O 浓度增加约 10ppb,SOA 浓度增加约 5.2μg·m-3,而 GUV 254 会使 SOA 浓度增加约 1.2μg·m-3,对 O 浓度的影响较小。此外,将 GUV 222 的紫外线辐照度从 1 增加到 5μW·cm-3,氧化剂和 SOA 浓度增加高达 80%。对于 GUV 254,将紫外线辐照度从 30 增加到 50μW·cm-3 或将辐射体积增加一倍,SOA 浓度增加高达 50%。请注意,室内气流模式,特别是浮力驱动的气流(或置换通风),导致呼吸区的 SOA 浓度比混合良好的气流低 15-45%。结果还表明,当通风率低于 2h 时,与 GUV 222 相比,运行 GUV 254 对人体接触二次污染物的影响较小。但是,当室内 O 水平(>15ppb)较高时,GUV 254 比 GUV 222 可能会产生更多的污染物。这些结果表明,GUV 系统的设计应考虑室内 O 水平和房间通风条件。