Department of Mathematics, College of Education, University of Zakho, Duhok, Iraq.
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Iraq.
PLoS One. 2024 Jun 26;19(6):e0303760. doi: 10.1371/journal.pone.0303760. eCollection 2024.
This research presents a novel conformable-Caputo fractional non-polynomial spline method for solving the time-fractional Korteweg-de Vries (KdV) equation. Emphasizing numerical analysis and algorithm development, the method offers enhanced precision and modeling capabilities. Evaluation via the Von Neumann method demonstrates unconditional stability within defined parameters. Comparative analysis, supported by contour and 2D/3D graphs, validates the method's accuracy and efficiency against existing approaches. Quantitative assessment using L2 and L∞ error norms confirms its superiority. In conclusion, the study proposes a robust solution for the time-fractional KdV equation.
本研究提出了一种新颖的一致 Caputo 分数非多项式样条方法,用于求解时间分数 Korteweg-de Vries(KdV)方程。该方法强调数值分析和算法开发,提供了更高的精度和建模能力。通过冯·诺依曼方法评估,在定义的参数范围内证明了无条件稳定性。通过轮廓图和 2D/3D 图进行的比较分析,验证了该方法相对于现有方法的准确性和效率。使用 L2 和 L∞误差范数的定量评估证实了其优越性。总之,本研究提出了一种用于时间分数 KdV 方程的鲁棒解决方案。