Robotics Department, University of Michigan, Ann Arbor, MI, USA; NeuRRo Lab, Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA.
Department of Kinesiology, Michigan State University, Lansing, MI, USA.
Comput Biol Med. 2024 Aug;178:108778. doi: 10.1016/j.compbiomed.2024.108778. Epub 2024 Jun 25.
Body-machine interfaces (BoMIs)-systems that control assistive devices (e.g., a robotic manipulator) with a person's movements-offer a robust and non-invasive alternative to brain-machine interfaces for individuals with neurological injuries. However, commercially-available assistive devices offer more degrees of freedom (DOFs) than can be efficiently controlled with a user's residual motor function. Therefore, BoMIs often rely on nonintuitive mappings between body and device movements. Learning these mappings requires considerable practice time in a lab/clinic, which can be challenging. Virtual environments can potentially address this challenge, but there are limited options for high-DOF assistive devices, and it is unclear if learning with a virtual device is similar to learning with its physical counterpart. We developed a novel virtual robotic platform that replicated a commercially-available 6-DOF robotic manipulator. Participants controlled the physical and virtual robots using four wireless inertial measurement units (IMUs) fixed to the upper torso. Forty-three neurologically unimpaired adults practiced a target-matching task using either the physical (sample size n = 25) or virtual device (sample size n = 18) involving pre-, mid-, and post-tests separated by four training blocks. We found that both groups made similar improvements from pre-test in movement time at mid-test (Δvirtual: 9.9 ± 9.5 s; Δphysical: 11.1 ± 9.9 s) and post-test (Δvirtual: 11.1 ± 9.1 s; Δphysical: 11.8 ± 10.5 s) and in path length at mid-test (Δvirtual: 6.1 ± 6.3 m/m; Δphysical: 3.3 ± 3.5 m/m) and post-test (Δvirtual: 6.6 ± 6.2 m/m; Δphysical: 3.5 ± 4.0 m/m). Our results indicate the feasibility of using virtual environments for learning to control assistive devices. Future work should determine how these findings generalize to clinical populations.
体机接口(BoMIs)——一种用人体运动控制辅助设备(如机械臂)的系统——为神经损伤患者提供了一种比脑机接口更强大和非侵入性的替代方案。然而,商业上可用的辅助设备提供的自由度(DOFs)比用户剩余的运动功能更能有效地控制。因此,BoMIs 通常依赖于身体和设备运动之间非直观的映射。学习这些映射需要在实验室/诊所中进行大量的实践,这可能具有挑战性。虚拟环境有可能解决这个挑战,但高自由度辅助设备的选择有限,并且不清楚使用虚拟设备学习是否与使用其物理对应物学习相似。我们开发了一种新的虚拟机器人平台,复制了一种商业上可用的 6-DOF 机械臂。参与者使用固定在上半身的四个无线惯性测量单元(IMU)控制物理和虚拟机器人。43 名神经未受损的成年人使用物理(样本量 n = 25)或虚拟设备(样本量 n = 18)进行目标匹配任务,包括预测试、中测试和后测试,四个训练块隔开。我们发现两组在中测试时的运动时间(Δ虚拟:9.9 ± 9.5 s;Δ物理:11.1 ± 9.9 s)和后测试(Δ虚拟:11.1 ± 9.1 s;Δ物理:11.8 ± 10.5 s)以及在中测试时的路径长度(Δ虚拟:6.1 ± 6.3 m/m;Δ物理:3.3 ± 3.5 m/m)和后测试(Δ虚拟:6.6 ± 6.2 m/m;Δ物理:3.5 ± 4.0 m/m)上都取得了相似的进步。我们的结果表明,使用虚拟环境学习控制辅助设备是可行的。未来的工作应该确定这些发现如何推广到临床人群。