Suppr超能文献

基于机器学习的分类方法在开发传染病宿主蛋白诊断模型中的应用。

Application of a Machine Learning-Based Classification Approach for Developing Host Protein Diagnostic Models for Infectious Disease.

作者信息

Scherr Thomas F, Douglas Christina E, Schaecher Kurt E, Schoepp Randal J, Ricks Keersten M, Shoemaker Charles J

机构信息

Atticus Labs, Baltimore, MD 21212, USA.

Diagnostic Systems Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.

出版信息

Diagnostics (Basel). 2024 Jun 18;14(12):1290. doi: 10.3390/diagnostics14121290.

Abstract

In recent years, infectious disease diagnosis has increasingly turned to host-centered approaches as a complement to pathogen-directed ones. The former, however, typically requires the interpretation of complex multiple biomarker datasets to arrive at an informative diagnostic outcome. This report describes a machine learning (ML)-based classification workflow that is intended as a template for researchers seeking to apply ML approaches for developing host-based infectious disease biomarker classifiers. As an example, we built a classification model that could accurately distinguish between three disease etiology classes: bacterial, viral, and normal in human sera using host protein biomarkers of known diagnostic utility. After collecting protein data from known disease samples, we trained a series of increasingly complex Auto-ML models until arriving at an optimized classifier that could differentiate viral, bacterial, and non-disease samples. Even when limited to a relatively small training set size, the model had robust diagnostic characteristics and performed well when faced with a blinded sample set. We present here a flexible approach for applying an Auto-ML-based workflow for the identification of host biomarker classifiers with diagnostic utility for infectious disease, and which can readily be adapted for multiple biomarker classes and disease states.

摘要

近年来,传染病诊断越来越多地转向以宿主为中心的方法,作为针对病原体方法的补充。然而,前者通常需要对复杂的多个生物标志物数据集进行解读,以得出有信息量的诊断结果。本报告描述了一种基于机器学习(ML)的分类工作流程,旨在为寻求应用ML方法开发基于宿主的传染病生物标志物分类器的研究人员提供一个模板。例如,我们构建了一个分类模型,该模型可以使用已知诊断效用的宿主蛋白生物标志物,准确区分人类血清中的三种疾病病因类别:细菌、病毒和正常。在从已知疾病样本中收集蛋白质数据后,我们训练了一系列越来越复杂的自动ML模型,直到得到一个可以区分病毒、细菌和非疾病样本的优化分类器。即使限于相对较小的训练集规模,该模型也具有强大的诊断特征,并且在面对盲法样本集时表现良好。我们在此提出一种灵活的方法,用于应用基于自动ML的工作流程来识别对传染病具有诊断效用的宿主生物标志物分类器,并且该方法可以很容易地适用于多种生物标志物类别和疾病状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2c4/11202442/552add6c3792/diagnostics-14-01290-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验