Bouchikhi Abdelhadi, Safhi Amine El Mahdi, Maherzi Walid, Mamindy-Pajany Yannick, Kunther Wolfgang, Benzerzour Mahfoud, Abriak Nor-Edine
Laboratoire des Infrastructures Intelligentes et des Technologies de l'Environnement Connectés (LabI2TEC), Institut Supérieur du Bâtiment et des Travaux Publics, F-13009 Marseille, France.
Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
Materials (Basel). 2024 Jun 12;17(12):2867. doi: 10.3390/ma17122867.
Recent literature has exhibited a growing interest in the utilization of ground glass powder (GP) as a supplementary cementitious material (SCM). Yet, the application of SCMs in stabilizing heavy metallic and metalloid elements remains underexplored. This research zeroes in on zinc stabilization using a binder amalgam of GP and ordinary Portland cement (OPC). This study juxtaposes the stability of zinc in a recomposed binder consisting of 30% GP and 70% OPC (denoted as 30GP-M) against a reference binder of 100% CEM I 52.5 N (labeled reference mortar, RM) across curing intervals of 1, 28, and 90 days. Remarkably, the findings indicate a heightened kinetic immobilization of Zn at 90 days in the presence of GP-surging up to 40% in contrast to RM. Advanced microstructural analyses delineate the stabilization locales for Zn, including on the periphery of hydrated CS particles (Zn-CS), within GP-reactive sites (Si*-O-Zn), and amid C-S-H gel structures, i.e., (C/Zn)-S-H. A matrix with 30% GP bolsters the hydration process of CS vis-à-vis the RM matrix. Probing deeper, the microstructural characterization underscores GP's prowess in Zn immobilization, particularly at the interaction zone with the paste. In the Zn milieu, it was discerning a transmutation-some products born from the GP-Portlandite reaction morph into GP-calcium-zincate.
近期文献显示,人们对将磨细玻璃粉(GP)用作辅助胶凝材料(SCM)的兴趣日益浓厚。然而,SCMs在稳定重金属和类金属元素方面的应用仍未得到充分探索。本研究聚焦于使用GP与普通硅酸盐水泥(OPC)的粘结剂混合物来稳定锌。本研究将由30% GP和70% OPC组成的重组粘结剂(记为30GP-M)中锌的稳定性与100% CEM I 52.5 N的参考粘结剂(标记为参考砂浆,RM)在1天、28天和90天的养护期内进行了对比。值得注意的是,研究结果表明,在90天时,GP的存在使锌的动力学固定作用增强,与RM相比提高了40%。先进的微观结构分析确定了锌的稳定位置,包括在水化CS颗粒的周边(Zn-CS)、GP反应位点内(Si*-O-Zn)以及C-S-H凝胶结构中,即(C/Zn)-S-H。与RM基体相比,含有30% GP的基体促进了CS的水化过程。进一步探究,微观结构表征强调了GP在固定锌方面的能力,特别是在与浆体的相互作用区域。在锌环境中,可以观察到一种转变——一些由GP-氢氧化钙反应产生的产物转变为GP-钙锌矿。