Suppr超能文献

增材制造的碳增强ABS蜂窝复合结构及基于机器学习的性能预测

Additively Manufactured Carbon-Reinforced ABS Honeycomb Composite Structures and Property Prediction by Machine Learning.

作者信息

Ranaiefar Meelad, Singh Mrityunjay, Halbig Michael C

机构信息

NASA Glenn Research Center, Cleveland, OH 44135, USA.

Ohio Aerospace Institute, Cleveland, OH 44142, USA.

出版信息

Molecules. 2024 Jun 8;29(12):2736. doi: 10.3390/molecules29122736.

Abstract

The expansive utility of polymeric 3D-printing technologies and demand for high- performance lightweight structures has prompted the emergence of various carbon-reinforced polymer composite filaments. However, detailed characterization of the processing-microstructure-property relationships of these materials is still required to realize their full potential. In this study, acrylonitrile butadiene styrene (ABS) and two carbon-reinforced ABS variants, with either carbon nanotubes (CNT) or 5 wt.% chopped carbon fiber (CF), were designed in a bio-inspired honeycomb geometry. These structures were manufactured by fused filament fabrication (FFF) and investigated across a range of layer thicknesses and hexagonal (hex) sizes. Microscopy of material cross-sections was conducted to evaluate the relationship between print parameters and porosity. Analyses determined a trend of reduced porosity with lower print-layer heights and hex sizes compared to larger print-layer heights and hex sizes. Mechanical properties were evaluated through compression testing, with ABS specimens achieving higher compressive yield strength, while CNT-ABS achieved higher ultimate compressive strength due to the reduction in porosity and subsequent strengthening. A trend of decreasing strength with increasing hex size across all materials was supported by the negative correlation between porosity and increasing print-layer height and hex size. We elucidated the potential of honeycomb ABS, CNT-ABS, and ABS-5wt.% CF polymer composites for novel 3D-printed structures. These studies were supported by the development of a predictive classification and regression supervised machine learning model with 0.92 accuracy and a 0.96 coefficient of determination to help inform and guide design for targeted performance.

摘要

聚合物3D打印技术的广泛应用以及对高性能轻质结构的需求,促使了各种碳增强聚合物复合长丝的出现。然而,仍需要对这些材料的加工-微观结构-性能关系进行详细表征,以充分发挥其潜力。在本研究中,设计了具有生物启发蜂窝几何结构的丙烯腈-丁二烯-苯乙烯(ABS)以及两种碳增强ABS变体,一种含有碳纳米管(CNT),另一种含有5 wt.%的短切碳纤维(CF)。这些结构通过熔融长丝制造(FFF)工艺制造,并在一系列层厚和六边形(hex)尺寸下进行研究。对材料横截面进行显微镜观察,以评估打印参数与孔隙率之间的关系。分析确定,与较大的打印层高和六边形尺寸相比,较小的打印层高和六边形尺寸会使孔隙率降低。通过压缩测试评估力学性能,ABS试样具有较高的压缩屈服强度,而CNT-ABS由于孔隙率降低和随后的强化作用,具有较高的极限压缩强度。孔隙率与打印层高和六边形尺寸增加之间的负相关关系支持了所有材料强度随六边形尺寸增加而降低的趋势。我们阐明了蜂窝状ABS、CNT-ABS和5wt.% CF增强ABS聚合物复合材料在新型3D打印结构方面的潜力。这些研究得到了一个预测分类和回归监督机器学习模型的支持,该模型的准确率为0.92,决定系数为0.96,有助于为目标性能的设计提供信息和指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a15/11206613/2325485e5bf5/molecules-29-02736-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验