Suppr超能文献

基于磁化停留时间和神经网络的磁通门电流传感器设计

Design of Fluxgate Current Sensor Based on Magnetization Residence Times and Neural Networks.

作者信息

Li Jingjie, Ren Wei, Luo Yanshou, Zhang Xutong, Liu Xinpeng, Zhang Xue

机构信息

Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, Dalian University of Technology, Dalian 116024, China.

School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China.

出版信息

Sensors (Basel). 2024 Jun 9;24(12):3752. doi: 10.3390/s24123752.

Abstract

This study introduces a novel fluxgate current sensor with a compact, ring-shaped configuration that exhibits improved performance through the integration of magnetization residence times and neural networks. The sensor distinguishes itself with a unique magnetization profile, denoted as M waves, which emerge from the interaction between the target signal and ambient magnetic interference, effectively enhancing interference suppression. These M waves highlight the non-linear coupling between the magnetic field and magnetization residence times. Detection of these residence times is accomplished using full-wave rectification circuits and a Schmitt trigger, with a digital output provided by timing sequence detection. A dual-layer feedforward neural network deciphers the target signal, exploiting this non-linear relationship. The sensor achieves a linearity error of 0.054% within a measurement range of 15 A. When juxtaposed with conventional sensors utilizing the residence-time difference strategy, our sensor reduces linearity error by more than 40-fold and extends the effective measurement range by 150%. Furthermore, it demonstrates a significant decrease in ambient magnetic interference.

摘要

本研究介绍了一种新型磁通门电流传感器,其具有紧凑的环形结构,通过整合磁化停留时间和神经网络展现出了更高的性能。该传感器具有独特的磁化分布,称为M波,它由目标信号与环境磁干扰之间的相互作用产生,有效增强了干扰抑制能力。这些M波突出了磁场与磁化停留时间之间的非线性耦合。利用全波整流电路和施密特触发器来检测这些停留时间,并通过时序检测提供数字输出。一个双层前馈神经网络利用这种非线性关系来解读目标信号。该传感器在15 A的测量范围内实现了0.054%的线性误差。与采用停留时间差策略的传统传感器相比,我们的传感器将线性误差降低了40多倍,并将有效测量范围扩大了150%。此外,它还显著降低了环境磁干扰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验