Suppr超能文献

通过光纤布拉格光栅应变与结构变形的综合监测评估隧道衬砌稳定性

Assessment of Tunnel Lining Stability through Integrated Monitoring of Fiber Bragg Grating Strain and Structural Deformation.

作者信息

Li Chuan, He Dechao, Li Jiaqi, Xu Qiang, Wan Xiaorong, Su Jianning

机构信息

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

Yunnan Key Laboratory of Computer Technology Applications, Kunming 650500, China.

出版信息

Sensors (Basel). 2024 Jun 13;24(12):3824. doi: 10.3390/s24123824.

Abstract

Tunnel excavation induces the stress redistribution of the surrounding rock. Structural cracks may develop in the secondary lining due to this stress redistribution and bias pressure, consequently affecting the overall construction safety of the tunnel. This paper aims to achieve real-time monitoring of the excavation stability of the lining structure by integrating two monitoring technologies: structural deformation monitoring and fiber grating strain monitoring. Additionally, it proposes a method to simultaneously measure the thermal strain and applied stress-strain of the structure. By analyzing the displacement and deformation of the lining structure, its stability can be preliminarily evaluated in the short term. To achieve long-term real-time monitoring and a more accurate assessment of the tunnel structure's stability, the paper introduces fiber Bragg grating (FBG) strain sensor monitoring technology. First, based on the geological stratigraphy information obtained from the exploration, a simulation model of the tunnel under different section bias angles is established. The displacement and stress concentration areas of the lining structure are then analyzed to optimize the sensor deployment array and provide a theoretical basis for the sensor arrangement. FBG strain sensors are installed on the surface of the structure to measure thermal strain and loading stress-strain, whereas FBG temperature sensors measure local temperature. The findings indicate that following tunnel excavation, the maximum daily strain differences at K107+043 and K107+240 were 126.87 µε and 209.38 µε, respectively. After a period of rock disturbance, the average daily strain differences due to applied stress-strain were 16.8 µε and 12.65 µε, respectively. The thermal strain was close to the daily strain difference. Therefore, after the rock disturbance subsided, the strain fluctuations in the lining structure were mainly caused by local temperature changes, and the surrounding rock tended to stabilize. This offers a viable method for evaluating structural stability post-tunnel excavation.

摘要

隧道开挖会引起围岩应力重新分布。由于这种应力重新分布和偏压,二次衬砌可能会出现结构裂缝,从而影响隧道的整体施工安全。本文旨在通过整合结构变形监测和光纤光栅应变监测这两种监测技术,实现对衬砌结构开挖稳定性的实时监测。此外,还提出了一种同时测量结构热应变和外加应力应变的方法。通过分析衬砌结构的位移和变形,可以在短期内初步评估其稳定性。为了实现长期实时监测并更准确地评估隧道结构的稳定性,本文引入了光纤布拉格光栅(FBG)应变传感器监测技术。首先,根据勘探获得的地质地层信息,建立不同断面偏角下隧道的模拟模型。然后分析衬砌结构的位移和应力集中区域,以优化传感器布置阵列,为传感器布置提供理论依据。在结构表面安装FBG应变传感器以测量热应变和加载应力应变,而FBG温度传感器则测量局部温度。结果表明,隧道开挖后,K107 + 043和K107 + 240处的最大日应变差分别为126.87 με和209.38 με。经过一段时间的岩石扰动后,由于外加应力应变引起的平均日应变差分别为16.8 με和12.65 με。热应变接近日应变差。因此,岩石扰动消退后,衬砌结构中的应变波动主要由局部温度变化引起,围岩趋于稳定。这为评估隧道开挖后的结构稳定性提供了一种可行的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c168/11207211/59020189e9c7/sensors-24-03824-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验