Suppr超能文献

一种用于多模态帕金森病筛查的量子启发式机器学习方法。

A quantum inspired machine learning approach for multimodal Parkinson's disease screening.

作者信息

Vatsavai Diya, Iyer Anya, Nair Ashwin A

机构信息

Valley Christian High School, San Jose, CA, USA.

Dougherty Valley High School, San Ramon, CA, USA.

出版信息

Sci Rep. 2025 Apr 4;15(1):11660. doi: 10.1038/s41598-025-95315-0.

Abstract

Parkinson's disease, currently the fastest-growing neurodegenerative disorder globally, has seen a 50% increase in cases within just two years. As disease progression impairs speech, memory, and motor functions over time, early diagnosis is crucial for preserving patients' quality of life. Although machine-learning-based detection has shown promise for detecting Parkinson's disease, most studies rely on a single feature for classification and can be error-prone due to the variability of symptoms between patients. To address this limitation we utilized the mPower dataset, which includes 150,000 samples across four key biomarkers: voice, gait, tapping, and demographic data. From these measurements, we extracted 64 features and trained a baseline Random Forest model to select the features above the 80th percentile. For classification, we designed a simulatable quantum support vector machine (qSVM) that detects high-dimensional patterns, leveraging recent advancements in quantum machine learning. With this novel and simulatable architecture that can be run on standard hardware rather than resource-intensive quantum computers, our model achieves an accuracy of 90%, F-1 score of 0.90, and an AUC of 0.98-surpassing benchmark models. Utilizing an innovative classification framework built on a diverse set of features, our model offers a pathway for accessible global Parkinson's screening.

摘要

帕金森病是目前全球增长最快的神经退行性疾病,在短短两年内病例数增加了50%。随着疾病的进展,言语、记忆和运动功能会随着时间的推移而受损,因此早期诊断对于维持患者的生活质量至关重要。尽管基于机器学习的检测方法在检测帕金森病方面显示出了前景,但大多数研究依赖单一特征进行分类,并且由于患者症状的变异性,可能容易出错。为了解决这一局限性,我们使用了mPower数据集,该数据集包含跨越四个关键生物标志物(语音、步态、敲击和人口统计学数据)的150,000个样本。从这些测量中,我们提取了64个特征,并训练了一个基线随机森林模型,以选择第80百分位数以上的特征。为了进行分类,我们设计了一种可模拟的量子支持向量机(qSVM),利用量子机器学习的最新进展来检测高维模式。通过这种可以在标准硬件而不是资源密集型量子计算机上运行的新颖且可模拟的架构,我们的模型实现了90%的准确率、0.90的F1分数和0.98的AUC,超过了基准模型。利用基于多样化特征集构建的创新分类框架,我们的模型为全球范围内可及的帕金森病筛查提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b8a/11971407/2839c8f2cbe9/41598_2025_95315_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验