Zhou Yuanyuan, Zhang Dingwen, Ji Yingxiao, Bu Shuohan, Hu Xinzhu, Zhao Congying, Lv Zhou, Li Litao
Department of Neurology, Hebei Medical University, Shijiazhuang, China.
Department of Neurology, Baoding No.1 Central Hospital, Baoding, China.
Front Neurosci. 2025 Feb 19;19:1493988. doi: 10.3389/fnins.2025.1493988. eCollection 2025.
Fall risk prediction is crucial for preventing falls in patients with cerebral small vessel disease (CSVD), especially for those with gait disturbances. However, research in this area is limited, particularly in the early, asymptomatic phase. Wearable sensors offer an objective method for gait assessment. This study integrating wearable sensors and machine learning, aimed to predict fall risk in patients with covert CSVD.
We employed soft robotic exoskeleton (SRE) to acquire gait characteristics and surface electromyography (sEMG) system to collect sEMG features, constructing three datasets: gait-only, sEMG-only, and their combination. Using Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Neural Network (NN) algorithms, we developed twelve predictive models. Furthermore, we integrated the selected baseline data and imaging markers with the three original datasets to create three new integrated datasets, and constructed another twelve optimized predictive models using the same methods. A total of 117 participants were enrolled in the study.
Of the 28 features, ANOVA identified 10 significant indicators. The Gait & sEMG integration dataset, analyzed using the SVM algorithm, demonstrated superior performance compared to other models. This model exhibited an area under the curve (AUC) of 0.986, along with a sensitivity of 0.909 and a specificity of0.923, reflecting its robust discriminatory capability.
This study highlights the essential role of gait characteristics, electromyographic features, baseline data, and imaging markers in predicting fall risk. It also successfully developed an SVM-based model integrating these features. This model offers a valuable tool for early detection of fall risk in CSVD patients, potentially enhancing clinical decision-making and prognosis.
跌倒风险预测对于预防脑小血管疾病(CSVD)患者跌倒至关重要,尤其是对于那些有步态障碍的患者。然而,该领域的研究有限,特别是在早期无症状阶段。可穿戴传感器为步态评估提供了一种客观方法。本研究将可穿戴传感器与机器学习相结合,旨在预测隐匿性CSVD患者的跌倒风险。
我们采用软机器人外骨骼(SRE)获取步态特征,并使用表面肌电图(sEMG)系统收集sEMG特征,构建了三个数据集:仅步态数据集、仅sEMG数据集及其组合数据集。使用支持向量机(SVM)、随机森林(RF)、梯度提升决策树(GBDT)和神经网络(NN)算法,我们开发了12个预测模型。此外,我们将选定的基线数据和影像学标志物与三个原始数据集相结合,创建了三个新的综合数据集,并使用相同方法构建了另外12个优化预测模型。共有117名参与者纳入本研究。
在28个特征中,方差分析确定了10个显著指标。使用SVM算法分析的步态与sEMG整合数据集表现出优于其他模型的性能。该模型的曲线下面积(AUC)为0.986,灵敏度为0.909,特异性为0.923,反映了其强大的判别能力。
本研究强调了步态特征、肌电图特征、基线数据和影像学标志物在预测跌倒风险中的重要作用。它还成功开发了一个整合这些特征的基于SVM的模型。该模型为早期检测CSVD患者的跌倒风险提供了一个有价值的工具,可能会增强临床决策和预后。