Suppr超能文献

一种通过耦合CCM-ECCM贝叶斯网络识别控制蓝藻水华因素的框架。

A framework for identifying factors controlling cyanobacterium blooms by coupled CCM-ECCM Bayesian networks.

作者信息

Tal O, Ostrovsky I, Gal G

机构信息

Kinneret Limnological Laboratory Israel Oceanographic and Limnological Research Migdal Israel.

出版信息

Ecol Evol. 2024 Jun 25;14(6):e11475. doi: 10.1002/ece3.11475. eCollection 2024 Jun.

Abstract

Cyanobacterial blooms in freshwater sources are a global concern, and gaining insight into their causes is crucial for effective resource management and control. In this study, we present a novel computational framework for the causal analysis of cyanobacterial harmful algal blooms (cyanoHABs) in Lake Kinneret. Our framework integrates Convergent Cross Mapping (CCM) and Extended CCM (ECCM) causal networks with Bayesian Network (BN) models. The constructed CCM-ECCM causal networks and BN models unveil significant interactions among factors influencing cyanoHAB formation. These interactions have been validated by domain experts and supported by evidence from peer-reviewed publications. Our findings suggest that levels are influenced not only by community structure but also by ammonium, phosphate, oxygen, and temperature levels in the weeks preceding bloom occurrences. We demonstrated a non-parametric computational framework for causal analysis of a multivariate ecosystem. Our framework offers a more comprehensive understanding of the underlying mechanisms driving blooms in Lake Kinneret. It captures complex interactions and provides an explainable prediction model. By considering causal relationships, temporal dynamics, and joint probabilities of environmental factors, the proposed framework enhances our understanding of cyanoHABs in Lake Kinneret.

摘要

淡水水源中的蓝藻水华是一个全球性问题,深入了解其成因对于有效的资源管理和控制至关重要。在本研究中,我们提出了一种用于基尼烈湖蓝藻有害藻华(cyanoHABs)因果分析的新型计算框架。我们的框架将收敛交叉映射(CCM)和扩展CCM(ECCM)因果网络与贝叶斯网络(BN)模型相结合。构建的CCM-ECCM因果网络和BN模型揭示了影响cyanoHAB形成的因素之间的显著相互作用。这些相互作用已得到领域专家的验证,并得到同行评审出版物证据的支持。我们的研究结果表明,藻华发生前几周的藻华水平不仅受群落结构影响,还受铵、磷酸盐、氧气和温度水平影响。我们展示了一种用于多变量生态系统因果分析的非参数计算框架。我们的框架提供了对驱动基尼烈湖藻华的潜在机制更全面的理解。它捕捉复杂的相互作用并提供一个可解释的预测模型。通过考虑因果关系、时间动态和环境因素的联合概率,所提出的框架增强了我们对基尼烈湖cyanoHABs的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d0c/11199127/7a50f7e09644/ECE3-14-e11475-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验