Ma Ren-Min, Luan Hong-Yi, Zhao Zi-Wei, Mao Wen-Zhi, Wang Shao-Lei, Ouyang Yun-Hao, Shao Zeng-Kai
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China.
Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.
Fundam Res. 2022 Nov 18;3(4):537-543. doi: 10.1016/j.fmre.2022.11.004. eCollection 2023 Jul.
Simultaneous localization of light to extreme spatial and spectral scales is of high importance for testing fundamental physics and various applications. However, there is a longstanding trade-off between localizing a light field in space and in frequency. Here we discover a new class of twisted lattice nanocavities based on mode locking in momentum space. The twisted lattice nanocavity hosts a strongly localized light field in a 0.048 λ mode volume with a quality factor exceeding 2.9 × 10 (∼250 μs photon lifetime), which presents a record high figure of merit of light localization among all reported optical cavities. Based on the discovery, we have demonstrated silicon-based twisted lattice nanocavities with quality factor over 1 million. Our result provides a powerful platform to study light-matter interaction in extreme conditions for tests of fundamental physics and applications in nanolasing, ultrasensing, nonlinear optics, optomechanics and quantum-optical devices.
同时将光定位到极端的空间和光谱尺度对于测试基础物理学和各种应用非常重要。然而,在空间和频率上定位光场之间存在长期的权衡。在这里,我们基于动量空间中的锁模发现了一类新型的扭曲晶格纳米腔。扭曲晶格纳米腔在0.048λ的模式体积中拥有一个强局域化的光场,品质因数超过2.9×10(约250微秒光子寿命),这在所有报道的光学腔中呈现出创纪录的高光定位品质因数。基于这一发现,我们已经展示了品质因数超过100万的硅基扭曲晶格纳米腔。我们的结果为在极端条件下研究光与物质的相互作用提供了一个强大的平台,用于基础物理学测试以及纳米激光、超传感、非线性光学、光机械学和量子光学器件等应用。