Dong Kaichen, Zhang Tiancheng, Li Jiachen, Wang Qingjun, Yang Fuyi, Rho Yoonsoo, Wang Danqing, Grigoropoulos Costas P, Wu Junqiao, Yao Jie
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Rev Lett. 2021 Jun 4;126(22):223601. doi: 10.1103/PhysRevLett.126.223601.
The new physics of magic-angle twisted bilayer graphene (TBG) motivated extensive studies of flat bands hosted by moiré superlattices in van der Waals structures, inspiring the investigations into their photonic counterparts with potential applications including Bose-Einstein condensation. However, correlation between photonic flat bands and bilayer photonic moiré systems remains unexplored, impeding further development of moiré photonics. In this work, we formulate a coupled-mode theory for low-angle twisted bilayer honeycomb photonic crystals as a close analogy of TBG, discovering magic-angle photonic flat bands with a non-Anderson-type localization. Moreover, the interlayer separation constitutes a convenient degree of freedom in tuning photonic moiré bands without high pressure. A phase diagram is constructed to correlate the twist angle and separation dependencies to the photonic magic angles. Our findings reveal a salient correspondence between fermionic and bosonic moiré systems and pave the avenue toward novel applications through advanced photonic band or state engineering.
魔角扭曲双层石墨烯(TBG)的新物理学激发了对范德华结构中莫尔超晶格所承载的平带的广泛研究,推动了对其光子对应物的研究,这些光子对应物具有包括玻色 - 爱因斯坦凝聚在内的潜在应用。然而,光子平带与双层光子莫尔系统之间的相关性仍未得到探索,这阻碍了莫尔光子学的进一步发展。在这项工作中,我们为低角度扭曲双层蜂窝光子晶体制定了一种耦合模理论,作为TBG的紧密类比,发现了具有非安德森型局域化的魔角光子平带。此外,层间间距构成了一个方便的自由度,可在无需高压的情况下调节光子莫尔带。构建了一个相图,以关联扭曲角和间距依赖性与光子魔角。我们的发现揭示了费米子和玻色子莫尔系统之间的显著对应关系,并为通过先进的光子带或状态工程实现新应用铺平了道路。