Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anesthesiology and Critical Care, Saint-Antoine Hospital, Paris, France.
Curr Opin Anaesthesiol. 2024 Aug 1;37(4):413-420. doi: 10.1097/ACO.0000000000001388. Epub 2024 May 16.
PURPOSE OF REVIEW: The integration of artificial intelligence (AI) in nonoperating room anesthesia (NORA) represents a timely and significant advancement. As the demand for NORA services expands, the application of AI is poised to improve patient selection, perioperative care, and anesthesia delivery. This review examines AI's growing impact on NORA and how it can optimize our clinical practice in the near future. RECENT FINDINGS: AI has already improved various aspects of anesthesia, including preoperative assessment, intraoperative management, and postoperative care. Studies highlight AI's role in patient risk stratification, real-time decision support, and predictive modeling for patient outcomes. Notably, AI applications can be used to target patients at risk of complications, alert clinicians to the upcoming occurrence of an intraoperative adverse event such as hypotension or hypoxemia, or predict their tolerance of anesthesia after the procedure. Despite these advances, challenges persist, including ethical considerations, algorithmic bias, data security, and the need for transparent decision-making processes within AI systems. SUMMARY: The findings underscore the substantial benefits of AI in NORA, which include improved safety, efficiency, and personalized care. AI's predictive capabilities in assessing hypoxemia risk and other perioperative events, have demonstrated potential to exceed human prognostic accuracy. The implications of these findings advocate for a careful yet progressive adoption of AI in clinical practice, encouraging the development of robust ethical guidelines, continual professional training, and comprehensive data management strategies. Furthermore, AI's role in anesthesia underscores the need for multidisciplinary research to address the limitations and fully leverage AI's capabilities for patient-centered anesthesia care.
目的综述:人工智能 (AI) 在非手术室麻醉 (NORA) 中的整合代表了一个及时且重要的进展。随着对 NORA 服务需求的增长,AI 的应用有望改善患者选择、围手术期护理和麻醉实施。本篇综述探讨了 AI 对 NORA 的日益增长的影响,以及它如何在不久的将来优化我们的临床实践。
最近的发现:AI 已经改善了麻醉的各个方面,包括术前评估、术中管理和术后护理。研究强调了 AI 在患者风险分层、实时决策支持和患者结局预测建模中的作用。值得注意的是,AI 应用程序可用于针对有并发症风险的患者,提醒临床医生即将发生术中不良事件(如低血压或低氧血症),或预测他们在手术后对麻醉的耐受性。尽管取得了这些进展,但仍存在挑战,包括伦理问题、算法偏见、数据安全以及 AI 系统中需要透明的决策过程。
总结:这些发现强调了 AI 在 NORA 中的重要作用,包括提高安全性、效率和个性化护理。AI 在评估低氧血症风险和其他围手术期事件方面的预测能力已被证明具有超越人类预后准确性的潜力。这些发现的意义提倡在临床实践中谨慎而渐进地采用 AI,鼓励制定强有力的伦理准则、持续的专业培训和全面的数据管理策略。此外,AI 在麻醉中的作用强调了多学科研究的必要性,以解决限制因素并充分利用 AI 为以患者为中心的麻醉护理提供的能力。
Curr Opin Anaesthesiol. 2024-8-1
BMC Oral Health. 2025-4-18
Curr Opin Anaesthesiol. 2024-8-1
Curr Opin Anaesthesiol. 2024-6-1
Br J Hosp Med (Lond). 2024-8-30
J Med Internet Res. 2025-2-27