Suppr超能文献

整合检索增强生成技术以在基于网络的医疗服务中提供更个性化的医生推荐:模型开发研究

Integrating retrieval-augmented generation for enhanced personalized physician recommendations in web-based medical services: model development study.

作者信息

Zheng Yingbin, Yan Yiwei, Chen Sai, Cai Yunping, Ren Kun, Liu Yishan, Zhuang Jiaying, Zhao Min

机构信息

Biomedical Big Data Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Meteorological Disaster Prevention Technology Center, Xiamen Meteorological Bureau, Xiamen, China.

出版信息

Front Public Health. 2025 Jan 29;13:1501408. doi: 10.3389/fpubh.2025.1501408. eCollection 2025.

Abstract

BACKGROUND

Web-based medical services have significantly improved access to healthcare by enabling remote consultations, streamlining scheduling, and improving access to medical information. However, providing personalized physician recommendations remains a challenge, often relying on manual triage by schedulers, which can be limited by scalability and availability.

OBJECTIVE

This study aimed to develop and validate a Retrieval-Augmented Generation-Based Physician Recommendation (RAGPR) model for better triage performance.

METHODS

This study utilizes a comprehensive dataset consisting of 646,383 consultation records from the Internet Hospital of the First Affiliated Hospital of Xiamen University. The research primarily evaluates the performance of various embedding models, including FastText, SBERT, and OpenAI, for the purposes of clustering and classifying medical condition labels. Additionally, the study assesses the effectiveness of large language models (LLMs) by comparing Mistral, GPT-4o-mini, and GPT-4o. Furthermore, the study includes the participation of three triage staff members who contributed to the evaluation of the efficiency of the RAGPR model through questionnaires.

RESULTS

The results of the study highlight the different performance levels of different models in text embedding tasks. FastText has an -score of 46%, while the SBERT and OpenAI significantly outperform it, achieving -scores of 95 and 96%, respectively. The analysis highlights the effectiveness of LLMs, with GPT-4o achieving the highest -score of 95%, followed by Mistral and GPT-4o-mini with -scores of 94 and 92%, respectively. In addition, the performance ratings for the models are as follows: Mistral with 4.56, GPT-4o-mini with 4.45 and GPT-4o with 4.67. Among these, SBERT and Mistral are identified as the optimal choices due to their balanced performance, cost effectiveness, and ease of implementation.

CONCLUSION

The RAGPR model can significantly improve the accuracy and personalization of web-based medical services, providing a scalable solution for improving patient-physician matching.

摘要

背景

基于网络的医疗服务通过实现远程会诊、简化预约流程以及改善医疗信息获取,显著提高了医疗服务的可及性。然而,提供个性化的医生推荐仍然是一项挑战,通常依赖调度员的人工分诊,这可能受到可扩展性和可用性的限制。

目的

本研究旨在开发并验证一种基于检索增强生成的医生推荐(RAGPR)模型,以实现更好的分诊性能。

方法

本研究使用了一个综合数据集,该数据集包含厦门大学附属第一医院互联网医院的646383条会诊记录。该研究主要评估各种嵌入模型(包括FastText、SBERT和OpenAI)在对医疗状况标签进行聚类和分类方面的性能。此外,该研究通过比较米斯特拉尔模型(Mistral)、GPT - 4o - mini和GPT - 4o来评估大语言模型(LLMs)的有效性。此外,该研究还邀请了三名分诊工作人员参与,他们通过问卷调查对RAGPR模型的效率进行评估。

结果

研究结果突出了不同模型在文本嵌入任务中的不同性能水平。FastText的F1分数为46%,而SBERT和OpenAI的表现明显优于它,分别达到了95%和96%的F1分数。分析突出了大语言模型的有效性,GPT - 4o的F1分数最高,为95%,其次是米斯特拉尔模型和GPT - 4o - mini,F1分数分别为94%和92%。此外,这些模型的性能评分如下:米斯特拉尔模型为4.56,GPT - 4o - mini为4.45,GPT - 4o为4.67。其中,SBERT和米斯特拉尔模型因其性能平衡、成本效益高且易于实施而被确定为最佳选择。

结论

RAGPR模型可以显著提高基于网络的医疗服务的准确性和个性化程度,为改善患者与医生的匹配提供一种可扩展的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d170/11813862/6d7193bb3200/fpubh-13-1501408-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验