Yu Kaihuan, Ren Junhui, Liao Wanda, Hu Bo, Bai Changning, Li Zhihui, Zhang Xingkai, Chhattal Muhammad, Li Ning, Qiang Li
Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.
College of Engineering, Zhejiang Normal University, Jinhua, 321000, P. R. China.
Small. 2024 Oct;20(43):e2402143. doi: 10.1002/smll.202402143. Epub 2024 Jun 27.
MXene is considered as a promising solid lubricant due to facile shearing ability and tuneable surface chemistry. However, it faces challenges in high-humidity environments where excessive water molecules can significantly impact its 2D structure, thus deteriorating its lubricating properties. In this work, the self-assembled monolayers are formed on MXene by surface chlorination (MXene-Cl) and fluorination (MXene-F), and their friction behaviors in high/low humidity are investigated. The results indicate that MXene-F and MXene-Cl can maintain a relatively constant friction coefficient (CoF) (MXene-F ∼0.76, MXene-Cl ∼0.48) under both high (75%) and low (25%)-relative humidity (RH) environments. Meanwhile, the MXene-F and MXene-Cl display a lower CoF than the pristine MXene (MXene CoF∼1.18) in high humidity. The above phenomena are mainly attributed to the preservation of its 2D layered structure, the increased layer spacing, and superficial partial oxidation for SAMs-functionalized MXene under high humidity during friction. Interestingly, MXene-Cl with moderate water resistance has a lower CoF than that of MXene-F with complete water resistance. The nanostructured water adsorption capacity and larger interlayer spacing of MXene-Cl make it exhibit a lower CoF compared to MXene-F. The findings of this study offer valuable guidance for tailoring MXene by surface chemical functionalization as an efficient solid lubricant in high humidity.
由于具有易于剪切的能力和可调节的表面化学性质,MXene被认为是一种很有前途的固体润滑剂。然而,在高湿度环境中,它面临着挑战,过多的水分子会显著影响其二维结构,从而降低其润滑性能。在这项工作中,通过表面氯化(MXene-Cl)和氟化(MXene-F)在MXene上形成自组装单分子层,并研究它们在高/低湿度下的摩擦行为。结果表明,在高(75%)和低(25%)相对湿度(RH)环境下,MXene-F和MXene-Cl都能保持相对恒定的摩擦系数(CoF)(MXene-F约为0.76,MXene-Cl约为0.48)。同时,在高湿度下,MXene-F和MXene-Cl的CoF比原始MXene(MXene CoF约为1.18)低。上述现象主要归因于其二维层状结构的保留、层间距的增加以及在摩擦过程中高湿度下SAMs功能化MXene的表面部分氧化。有趣的是,具有适度耐水性的MXene-Cl的CoF比具有完全耐水性的MXene-F的CoF低。MXene-Cl的纳米结构水吸附能力和更大的层间距使其与MXene-F相比表现出更低的CoF。本研究结果为通过表面化学功能化定制MXene作为高湿度环境下的高效固体润滑剂提供了有价值的指导。