Suppr超能文献

真菌甾体合酶功能的切换通过分子动力学模拟改变 PfNS 活性口袋中的芳香族残基簇

Function Switch of a Fungal Sesterterpene Synthase through Molecular Dynamics Simulation Assisted Alteration of an Aromatic Residue Cluster in the Active Pocket of PfNS.

机构信息

State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China.

School of Life Sciences, Ludong University, 264025, Yantai, Shandong, China.

出版信息

Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202406246. doi: 10.1002/anie.202406246. Epub 2024 Aug 12.

Abstract

Terpene synthases (TPSs) play pivotal roles in generating diverse terpenoids through complex cyclization pathways. Protein engineering of TPSs offers a crucial approach to expanding terpene diversity. However, significant potential remains untapped due to limited understanding of the structure-function relationships of TPSs. In this investigation, using a joint approach of molecular dynamics simulations-assisted engineering and site-directed mutagenesis, we manipulated the aromatic residue cluster (ARC) of a bifunctional terpene synthase (BFTPS), Pestalotiopsis fici nigtetraene synthase (PfNS). This led to the discovery of previously unreported catalytic functions yielding different cyclization patterns of sesterterpenes. Specifically, a quadruple variant (F89A/Y113F/W193L/T194W) completely altered PfNS's function, converting it from producing the bicyclic sesterterpene nigtetraene to the tricyclic ophiobolin F. Additionally, analysis of catalytic profiles by double, triple, and quadruple variants demonstrated that the ARC functions as a switch, unprecedently redirecting the production of 5/11 bicyclic (Type B) sesterterpenes to 5/15 bicyclic (Type A) ones. Molecular dynamics simulations and theozyme calculations further elucidated that, in addition to cation-π interactions, C-H⋅⋅⋅π interactions also play a key role in the cyclization patterns. This study offers a feasible strategy in protein engineering of TPSs for various industrial applications.

摘要

萜烯合酶(TPSs)通过复杂的环化途径在产生各种萜类化合物中发挥着关键作用。TPSs 的蛋白质工程提供了扩展萜类多样性的重要方法。然而,由于对 TPSs 的结构-功能关系的理解有限,仍然有很大的潜力尚未被开发。在这项研究中,我们采用分子动力学模拟辅助工程和定点突变的联合方法,对多功能萜烯合酶(BFTPS)、假尾孢菌素 fici 奈特烯合酶(PfNS)的芳香族残基簇(ARC)进行了操作。这导致发现了以前未报道的催化功能,产生了不同的倍半萜环化模式。具体来说,四重变体(F89A/Y113F/W193L/T194W)完全改变了 PfNS 的功能,使其从产生双环倍半萜奈特烯转化为三环 ophiobolin F。此外,通过双、三、四重变体分析催化谱表明,ARC 作为一个开关,前所未有地将 5/11 双环(B 型)倍半萜的产生重新定向为 5/15 双环(A 型)。分子动力学模拟和理论酶计算进一步阐明,除了阳离子-π 相互作用外,C-H···π 相互作用也在环化模式中起着关键作用。这项研究为 TPSs 的蛋白质工程提供了一种可行的策略,可用于各种工业应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验