State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, 200237, Shanghai, China.
School of Life Sciences, Ludong University, 264025, Yantai, Shandong, China.
Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202406246. doi: 10.1002/anie.202406246. Epub 2024 Aug 12.
Terpene synthases (TPSs) play pivotal roles in generating diverse terpenoids through complex cyclization pathways. Protein engineering of TPSs offers a crucial approach to expanding terpene diversity. However, significant potential remains untapped due to limited understanding of the structure-function relationships of TPSs. In this investigation, using a joint approach of molecular dynamics simulations-assisted engineering and site-directed mutagenesis, we manipulated the aromatic residue cluster (ARC) of a bifunctional terpene synthase (BFTPS), Pestalotiopsis fici nigtetraene synthase (PfNS). This led to the discovery of previously unreported catalytic functions yielding different cyclization patterns of sesterterpenes. Specifically, a quadruple variant (F89A/Y113F/W193L/T194W) completely altered PfNS's function, converting it from producing the bicyclic sesterterpene nigtetraene to the tricyclic ophiobolin F. Additionally, analysis of catalytic profiles by double, triple, and quadruple variants demonstrated that the ARC functions as a switch, unprecedently redirecting the production of 5/11 bicyclic (Type B) sesterterpenes to 5/15 bicyclic (Type A) ones. Molecular dynamics simulations and theozyme calculations further elucidated that, in addition to cation-π interactions, C-H⋅⋅⋅π interactions also play a key role in the cyclization patterns. This study offers a feasible strategy in protein engineering of TPSs for various industrial applications.
萜烯合酶(TPSs)通过复杂的环化途径在产生各种萜类化合物中发挥着关键作用。TPSs 的蛋白质工程提供了扩展萜类多样性的重要方法。然而,由于对 TPSs 的结构-功能关系的理解有限,仍然有很大的潜力尚未被开发。在这项研究中,我们采用分子动力学模拟辅助工程和定点突变的联合方法,对多功能萜烯合酶(BFTPS)、假尾孢菌素 fici 奈特烯合酶(PfNS)的芳香族残基簇(ARC)进行了操作。这导致发现了以前未报道的催化功能,产生了不同的倍半萜环化模式。具体来说,四重变体(F89A/Y113F/W193L/T194W)完全改变了 PfNS 的功能,使其从产生双环倍半萜奈特烯转化为三环 ophiobolin F。此外,通过双、三、四重变体分析催化谱表明,ARC 作为一个开关,前所未有地将 5/11 双环(B 型)倍半萜的产生重新定向为 5/15 双环(A 型)。分子动力学模拟和理论酶计算进一步阐明,除了阳离子-π 相互作用外,C-H···π 相互作用也在环化模式中起着关键作用。这项研究为 TPSs 的蛋白质工程提供了一种可行的策略,可用于各种工业应用。